Show commands: SageMath
Rank
The elliptic curves in class 23104.be have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||||||||
Complex multiplication
Each elliptic curve in class 23104.be has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-1}) \).Modular form 23104.2.a.be
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 23104.be
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
|---|---|---|---|---|---|---|---|---|---|
| 23104.be1 | 23104y1 | \([0, 0, 0, -6859, 0]\) | \(1728\) | \(20652012657856\) | \([2]\) | \(27360\) | \(1.2444\) | \(\Gamma_0(N)\)-optimal | \(-4\) |
| 23104.be2 | 23104y2 | \([0, 0, 0, 27436, 0]\) | \(1728\) | \(-1321728810102784\) | \([2]\) | \(54720\) | \(1.5909\) | \(-4\) |