Properties

Label 23104.be
Number of curves $2$
Conductor $23104$
CM \(\Q(\sqrt{-1}) \)
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("be1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 23104.be have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

Each elliptic curve in class 23104.be has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-1}) \).

Modular form 23104.2.a.be

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} - 3 q^{9} + 4 q^{13} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 23104.be

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
23104.be1 23104y1 \([0, 0, 0, -6859, 0]\) \(1728\) \(20652012657856\) \([2]\) \(27360\) \(1.2444\) \(\Gamma_0(N)\)-optimal \(-4\)
23104.be2 23104y2 \([0, 0, 0, 27436, 0]\) \(1728\) \(-1321728810102784\) \([2]\) \(54720\) \(1.5909\)   \(-4\)