Properties

Label 23100.s
Number of curves $2$
Conductor $23100$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("s1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 23100.s have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 23100.s do not have complex multiplication.

Modular form 23100.2.a.s

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{7} + q^{9} - q^{11} - 4 q^{13} - 2 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 23100.s

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
23100.s1 23100v2 \([0, 1, 0, -2465487508, -47004196600012]\) \(414354576760345737269208016/1182266314178222109375\) \(4729065256712888437500000000\) \([2]\) \(20966400\) \(4.1818\)  
23100.s2 23100v1 \([0, 1, 0, -92440633, -1327790350012]\) \(-349439858058052607328256/2844147488104248046875\) \(-711036872026062011718750000\) \([2]\) \(10483200\) \(3.8352\) \(\Gamma_0(N)\)-optimal