Properties

Label 229320.r
Number of curves $4$
Conductor $229320$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 229320.r have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 229320.r do not have complex multiplication.

Modular form 229320.2.a.r

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - 4 q^{11} + q^{13} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 229320.r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
229320.r1 229320ds4 \([0, 0, 0, -11014563, -14070139202]\) \(841356017734178/1404585\) \(246713972868679680\) \([2]\) \(7864320\) \(2.5994\)  
229320.r2 229320ds3 \([0, 0, 0, -1806483, 645071182]\) \(3711757787138/1124589375\) \(197533016906883840000\) \([2]\) \(7864320\) \(2.5994\)  
229320.r3 229320ds2 \([0, 0, 0, -695163, -215312762]\) \(423026849956/16769025\) \(1472731368654873600\) \([2, 2]\) \(3932160\) \(2.2529\)  
229320.r4 229320ds1 \([0, 0, 0, 19257, -12274598]\) \(35969456/2985255\) \(-65544637835738880\) \([2]\) \(1966080\) \(1.9063\) \(\Gamma_0(N)\)-optimal