Properties

Label 229276d
Number of curves $2$
Conductor $229276$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 229276d have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(31\)\(1 - T\)
\(43\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 229276d do not have complex multiplication.

Modular form 229276.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} + 3 q^{5} + q^{7} + q^{9} - 6 q^{11} + 2 q^{13} + 6 q^{15} + 6 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 229276d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
229276.d1 229276d1 \([0, -1, 0, -4314, -136963]\) \(-87808/31\) \(-3135396072304\) \([]\) \(471744\) \(1.1088\) \(\Gamma_0(N)\)-optimal
229276.d2 229276d2 \([0, -1, 0, 32666, 1334841]\) \(38112512/29791\) \(-3013115625484144\) \([]\) \(1415232\) \(1.6581\)