Properties

Label 2280.b
Number of curves $4$
Conductor $2280$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 2280.b have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2280.b do not have complex multiplication.

Modular form 2280.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + q^{9} + 4 q^{11} + 2 q^{13} - q^{15} + 6 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 2280.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2280.b1 2280a4 \([0, -1, 0, -2440, 47212]\) \(784767874322/35625\) \(72960000\) \([2]\) \(1536\) \(0.58494\)  
2280.b2 2280a3 \([0, -1, 0, -760, -7220]\) \(23735908082/1954815\) \(4003461120\) \([2]\) \(1536\) \(0.58494\)  
2280.b3 2280a2 \([0, -1, 0, -160, 700]\) \(445138564/81225\) \(83174400\) \([2, 2]\) \(768\) \(0.23837\)  
2280.b4 2280a1 \([0, -1, 0, 20, 52]\) \(3286064/7695\) \(-1969920\) \([2]\) \(384\) \(-0.10820\) \(\Gamma_0(N)\)-optimal