Properties

Label 2275c
Number of curves $4$
Conductor $2275$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 2275c have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(5\)\(1\)
\(7\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2275c do not have complex multiplication.

Modular form 2275.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} + q^{7} - 3 q^{8} - 3 q^{9} - q^{13} + q^{14} - q^{16} + 6 q^{17} - 3 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 2275c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2275.e3 2275c1 \([1, -1, 0, -1667, 26616]\) \(32798729601/3185\) \(49765625\) \([2]\) \(768\) \(0.51270\) \(\Gamma_0(N)\)-optimal
2275.e2 2275c2 \([1, -1, 0, -1792, 22491]\) \(40743095121/10144225\) \(158503515625\) \([2, 2]\) \(1536\) \(0.85927\)  
2275.e1 2275c3 \([1, -1, 0, -9917, -359384]\) \(6903498885921/374712065\) \(5854876015625\) \([2]\) \(3072\) \(1.2058\)  
2275.e4 2275c4 \([1, -1, 0, 4333, 138866]\) \(575722725759/874680625\) \(-13666884765625\) \([2]\) \(3072\) \(1.2058\)