Show commands: SageMath
Rank
The elliptic curves in class 2275c have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 2275c do not have complex multiplication.Modular form 2275.2.a.c
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 2275c
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 2275.e3 | 2275c1 | \([1, -1, 0, -1667, 26616]\) | \(32798729601/3185\) | \(49765625\) | \([2]\) | \(768\) | \(0.51270\) | \(\Gamma_0(N)\)-optimal |
| 2275.e2 | 2275c2 | \([1, -1, 0, -1792, 22491]\) | \(40743095121/10144225\) | \(158503515625\) | \([2, 2]\) | \(1536\) | \(0.85927\) | |
| 2275.e1 | 2275c3 | \([1, -1, 0, -9917, -359384]\) | \(6903498885921/374712065\) | \(5854876015625\) | \([2]\) | \(3072\) | \(1.2058\) | |
| 2275.e4 | 2275c4 | \([1, -1, 0, 4333, 138866]\) | \(575722725759/874680625\) | \(-13666884765625\) | \([2]\) | \(3072\) | \(1.2058\) |