Properties

Label 227136.hr
Number of curves $1$
Conductor $227136$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("hr1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 227136.hr1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 227136.hr do not have complex multiplication.

Modular form 227136.2.a.hr

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} - q^{7} + q^{9} + 2 q^{11} + q^{15} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 227136.hr

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
227136.hr1 227136bn1 \([0, 1, 0, 1716815, 2782489997]\) \(1811564780171264/11870974573731\) \(-3667131322320381080256\) \([]\) \(9031680\) \(2.8196\) \(\Gamma_0(N)\)-optimal