Properties

Label 225318x
Number of curves $1$
Conductor $225318$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("x1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 225318x1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(17\)\(1 + T\)
\(47\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 225318x do not have complex multiplication.

Modular form 225318.2.a.x

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{6} + q^{7} - q^{8} + q^{9} - q^{11} + q^{12} - 6 q^{13} - q^{14} + q^{16} + q^{17} - q^{18} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 225318x

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
225318.i1 225318x1 \([1, 0, 1, -1386, 19792]\) \(-133157973625/446148\) \(-985540932\) \([]\) \(135168\) \(0.59032\) \(\Gamma_0(N)\)-optimal