Properties

Label 225318.f
Number of curves $1$
Conductor $225318$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 225318.f1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(17\)\(1 - T\)
\(47\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 225318.f do not have complex multiplication.

Modular form 225318.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - 3 q^{7} - q^{8} + q^{9} + q^{10} + 4 q^{11} + q^{12} + 3 q^{14} - q^{15} + q^{16} + q^{17} - q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 225318.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
225318.f1 225318u1 \([1, 0, 1, -11989394, 15981249500]\) \(-8004468386329/2004504\) \(-47729819358646571544\) \([]\) \(10720512\) \(2.7631\) \(\Gamma_0(N)\)-optimal