Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
225.a1 |
225e1 |
225.a |
225e |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \) |
\( - 3^{7} \cdot 5^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$0.025588090$ |
$1$ |
|
$18$ |
$48$ |
$-0.043792$ |
$-102400/3$ |
$[0, 0, 1, -75, 256]$ |
\(y^2+y=x^3-75x+256\) |
225.a2 |
225e2 |
225.a |
225e |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \) |
\( - 3^{11} \cdot 5^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$0.127940452$ |
$1$ |
|
$10$ |
$240$ |
$0.760927$ |
$20480/243$ |
$[0, 0, 1, 375, -12344]$ |
\(y^2+y=x^3+375x-12344\) |
225.b1 |
225c7 |
225.b |
225c |
$8$ |
$16$ |
\( 3^{2} \cdot 5^{2} \) |
\( 3^{10} \cdot 5^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.96.0.49 |
2B |
$1$ |
$1$ |
|
$0$ |
$768$ |
$1.644896$ |
$1114544804970241/405$ |
$[1, -1, 1, -486005, 130530872]$ |
\(y^2+xy+y=x^3-x^2-486005x+130530872\) |
225.b2 |
225c5 |
225.b |
225c |
$8$ |
$16$ |
\( 3^{2} \cdot 5^{2} \) |
\( 3^{14} \cdot 5^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.53 |
2Cs |
$1$ |
$1$ |
|
$2$ |
$384$ |
$1.298321$ |
$272223782641/164025$ |
$[1, -1, 1, -30380, 2044622]$ |
\(y^2+xy+y=x^3-x^2-30380x+2044622\) |
225.b3 |
225c8 |
225.b |
225c |
$8$ |
$16$ |
\( 3^{2} \cdot 5^{2} \) |
\( - 3^{22} \cdot 5^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.96.0.65 |
2B |
$1$ |
$1$ |
|
$0$ |
$768$ |
$1.644896$ |
$-147281603041/215233605$ |
$[1, -1, 1, -24755, 2820872]$ |
\(y^2+xy+y=x^3-x^2-24755x+2820872\) |
225.b4 |
225c3 |
225.b |
225c |
$8$ |
$16$ |
\( 3^{2} \cdot 5^{2} \) |
\( 3^{7} \cdot 5^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.96.0.15 |
2B |
$1$ |
$1$ |
|
$0$ |
$192$ |
$0.951748$ |
$56667352321/15$ |
$[1, -1, 1, -18005, -925378]$ |
\(y^2+xy+y=x^3-x^2-18005x-925378\) |
225.b5 |
225c4 |
225.b |
225c |
$8$ |
$16$ |
\( 3^{2} \cdot 5^{2} \) |
\( 3^{10} \cdot 5^{10} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.61 |
2Cs |
$1$ |
$1$ |
|
$2$ |
$192$ |
$0.951748$ |
$111284641/50625$ |
$[1, -1, 1, -2255, 19622]$ |
\(y^2+xy+y=x^3-x^2-2255x+19622\) |
225.b6 |
225c2 |
225.b |
225c |
$8$ |
$16$ |
\( 3^{2} \cdot 5^{2} \) |
\( 3^{8} \cdot 5^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.2 |
2Cs |
$1$ |
$1$ |
|
$2$ |
$96$ |
$0.605174$ |
$13997521/225$ |
$[1, -1, 1, -1130, -14128]$ |
\(y^2+xy+y=x^3-x^2-1130x-14128\) |
225.b7 |
225c1 |
225.b |
225c |
$8$ |
$16$ |
\( 3^{2} \cdot 5^{2} \) |
\( - 3^{7} \cdot 5^{7} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.96.0.7 |
2B |
$1$ |
$1$ |
|
$3$ |
$48$ |
$0.258600$ |
$-1/15$ |
$[1, -1, 1, -5, -628]$ |
\(y^2+xy+y=x^3-x^2-5x-628\) |
225.b8 |
225c6 |
225.b |
225c |
$8$ |
$16$ |
\( 3^{2} \cdot 5^{2} \) |
\( - 3^{8} \cdot 5^{14} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.195 |
2B |
$1$ |
$1$ |
|
$0$ |
$384$ |
$1.298321$ |
$4733169839/3515625$ |
$[1, -1, 1, 7870, 141122]$ |
\(y^2+xy+y=x^3-x^2+7870x+141122\) |
225.c1 |
225a2 |
225.c |
225a |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \) |
\( - 3^{9} \cdot 5^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$5$ |
5.30.0.2 |
5Ns.2.1 |
$0.460920105$ |
$1$ |
|
$4$ |
$24$ |
$-0.228919$ |
$0$ |
$[0, 0, 1, 0, -34]$ |
\(y^2+y=x^3-34\) |
225.c2 |
225a1 |
225.c |
225a |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \) |
\( - 3^{3} \cdot 5^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$5$ |
5.30.0.2 |
5Ns.2.1 |
$0.153640035$ |
$1$ |
|
$6$ |
$8$ |
$-0.778225$ |
$0$ |
$[0, 0, 1, 0, 1]$ |
\(y^2+y=x^3+1\) |
225.d1 |
225b2 |
225.d |
225b |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \) |
\( - 3^{9} \cdot 5^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3, 5$ |
5.30.0.2, 27.648.18.4 |
5Ns.2.1, 3B.1.2 |
$1$ |
$1$ |
|
$0$ |
$120$ |
$0.575800$ |
$0$ |
$[0, 0, 1, 0, -4219]$ |
\(y^2+y=x^3-4219\) |
225.d2 |
225b1 |
225.d |
225b |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \) |
\( - 3^{3} \cdot 5^{8} \) |
$0$ |
$\Z/3\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3, 5$ |
5.30.0.2, 27.648.18.1 |
5Ns.2.1, 3B.1.1 |
$1$ |
$1$ |
|
$2$ |
$40$ |
$0.026494$ |
$0$ |
$[0, 0, 1, 0, 156]$ |
\(y^2+y=x^3+156\) |
225.e1 |
225d2 |
225.e |
225d |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \) |
\( - 3^{7} \cdot 5^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1$ |
$1$ |
|
$0$ |
$240$ |
$0.760927$ |
$-102400/3$ |
$[0, 0, 1, -1875, 32031]$ |
\(y^2+y=x^3-1875x+32031\) |
225.e2 |
225d1 |
225.e |
225d |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \) |
\( - 3^{11} \cdot 5^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1$ |
$1$ |
|
$0$ |
$48$ |
$-0.043792$ |
$20480/243$ |
$[0, 0, 1, 15, -99]$ |
\(y^2+y=x^3+15x-99\) |