Show commands:
SageMath
E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 225d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
225.e2 | 225d1 | \([0, 0, 1, 15, -99]\) | \(20480/243\) | \(-4428675\) | \([]\) | \(48\) | \(-0.043792\) | \(\Gamma_0(N)\)-optimal |
225.e1 | 225d2 | \([0, 0, 1, -1875, 32031]\) | \(-102400/3\) | \(-21357421875\) | \([]\) | \(240\) | \(0.76093\) |
Rank
sage: E.rank()
The elliptic curves in class 225d have rank \(0\).
Complex multiplication
The elliptic curves in class 225d do not have complex multiplication.Modular form 225.2.a.d
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.