Properties

Label 224400.ik
Number of curves $4$
Conductor $224400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ik1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 224400.ik have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(11\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 224400.ik do not have complex multiplication.

Modular form 224400.2.a.ik

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 4 q^{7} + q^{9} + q^{11} + 2 q^{13} - q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 224400.ik

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
224400.ik1 224400cx3 \([0, 1, 0, -561698808, 5123744882388]\) \(306234591284035366263793/1727485056\) \(110559043584000000\) \([2]\) \(33030144\) \(3.3401\)  
224400.ik2 224400cx2 \([0, 1, 0, -35106808, 80046706388]\) \(74768347616680342513/5615307472896\) \(359379678265344000000\) \([2, 2]\) \(16515072\) \(2.9936\)  
224400.ik3 224400cx4 \([0, 1, 0, -32802808, 91009138388]\) \(-60992553706117024753/20624795251201152\) \(-1319986896076873728000000\) \([2]\) \(33030144\) \(3.3401\)  
224400.ik4 224400cx1 \([0, 1, 0, -2338808, 1075826388]\) \(22106889268753393/4969545596928\) \(318050918203392000000\) \([2]\) \(8257536\) \(2.6470\) \(\Gamma_0(N)\)-optimal