Show commands: SageMath
Rank
The elliptic curves in class 223440gs have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 223440gs do not have complex multiplication.Modular form 223440.2.a.gs
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 223440gs
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 223440.fa4 | 223440gs1 | \([0, 1, 0, 4884, -9780]\) | \(427694384/249375\) | \(-7510712160000\) | \([2]\) | \(442368\) | \(1.1600\) | \(\Gamma_0(N)\)-optimal |
| 223440.fa3 | 223440gs2 | \([0, 1, 0, -19616, -97980]\) | \(6929294404/3980025\) | \(479483864294400\) | \([2, 2]\) | \(884736\) | \(1.5066\) | |
| 223440.fa2 | 223440gs3 | \([0, 1, 0, -205816, 35726900]\) | \(4001704635602/18475695\) | \(4451629140080640\) | \([2]\) | \(1769472\) | \(1.8532\) | |
| 223440.fa1 | 223440gs4 | \([0, 1, 0, -225416, -41175660]\) | \(5257286722802/13683705\) | \(3297022381148160\) | \([2]\) | \(1769472\) | \(1.8532\) |