Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+y=x^3-x^2+127353x-78462165\)
|
(homogenize, simplify) |
\(y^2z+yz^2=x^3-x^2z+127353xz^2-78462165z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+165049056x-3658750168176\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(669, 17484)$ | $0.32600589836144284981766216968$ | $\infty$ |
$(7027, 589704)$ | $2.9562696201841506421930239004$ | $\infty$ |
Integral points
\( \left(405, 6275\right) \), \( \left(405, -6276\right) \), \( \left(427, 7320\right) \), \( \left(427, -7321\right) \), \( \left(669, 17484\right) \), \( \left(669, -17485\right) \), \( \left(1263, 45776\right) \), \( \left(1263, -45777\right) \), \( \left(7027, 589704\right) \), \( \left(7027, -589705\right) \), \( \left(381093, 235258908\right) \), \( \left(381093, -235258909\right) \)
Invariants
Conductor: | $N$ | = | \( 22253 \) | = | $7 \cdot 11 \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $-2788841129405255771$ | = | $-1 \cdot 7^{2} \cdot 11^{9} \cdot 17^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{9463555063808}{115539436859} \) | = | $2^{15} \cdot 7^{-2} \cdot 11^{-9} \cdot 661^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.2202192913108135950449314926$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.80361261928270555492016418366$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0659265883154396$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.982733347316573$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.95167860595018355963270037495$ |
|
Real period: | $\Omega$ | ≈ | $0.12522195696460582644936542419$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 36 $ = $ 2\cdot3^{2}\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $4.2901580677834782757082221331 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.290158068 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.125222 \cdot 0.951679 \cdot 36}{1^2} \\ & \approx 4.290158068\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 276480 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$11$ | $9$ | $I_{9}$ | split multiplicative | -1 | 1 | 9 | 9 |
$17$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 9.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 23562 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \cdot 17 \), index $144$, genus $3$, and generators
$\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 20808 \\ 0 & 20945 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 10 & 181 \end{array}\right),\left(\begin{array}{rr} 10 & 9 \\ 81 & 73 \end{array}\right),\left(\begin{array}{rr} 23545 & 18 \\ 23544 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 7192 & 22185 \\ 7803 & 1378 \end{array}\right),\left(\begin{array}{rr} 6937 & 20808 \\ 9486 & 15709 \end{array}\right),\left(\begin{array}{rr} 18017 & 0 \\ 0 & 23561 \end{array}\right)$.
The torsion field $K:=\Q(E[23562])$ is a degree-$337707624038400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/23562\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | good | $2$ | \( 3179 = 11 \cdot 17^{2} \) |
$3$ | good | $2$ | \( 2023 = 7 \cdot 17^{2} \) |
$7$ | nonsplit multiplicative | $8$ | \( 3179 = 11 \cdot 17^{2} \) |
$11$ | split multiplicative | $12$ | \( 2023 = 7 \cdot 17^{2} \) |
$17$ | additive | $146$ | \( 77 = 7 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3 and 9.
Its isogeny class 22253b
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 77b2, its twist by $17$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-51}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.44.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.21296.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.8599366377.7 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.232182892179.5 | \(\Z/9\Z\) | not in database |
$6$ | 6.0.256812336.4 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | 12.0.22452684473388229641.1 | \(\Z/9\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.2.4614401888531379723888833223520510414848.1 | \(\Z/6\Z\) | not in database |
$18$ | 18.0.90825272371963147105303904338554206495453184.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ss | ord | ord | nonsplit | split | ord | add | ord | ord | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | 10,11 | 2 | 2 | 2 | 3 | 2 | - | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2,2 |
$\mu$-invariant(s) | 0,0 | 2 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.