Learn more

Refine search


Results (1-50 of 76 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
77.b3 77.b \( 7 \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 441, -15815]$ \(y^2+y=x^3+x^2+441x-15815\) 3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 22.2.0.a.1, 63.72.0-63.e.2.2, 66.16.0-66.a.1.1, $\ldots$
539.b3 539.b \( 7^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 21593, 5467657]$ \(y^2+y=x^3-x^2+21593x+5467657\) 3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.2, 22.2.0.a.1, 63.72.0-63.e.2.3, $\ldots$
693.b3 693.b \( 3^{2} \cdot 7 \cdot 11 \) $0$ $\Z/3\Z$ $1$ $[0, 0, 1, 3966, 430965]$ \(y^2+y=x^3+3966x+430965\) 3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 22.2.0.a.1, 63.72.0-63.e.2.4, 66.16.0-66.a.1.4, $\ldots$
847.c3 847.c \( 7 \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 53321, 21262764]$ \(y^2+y=x^3+x^2+53321x+21262764\) 3.4.0.a.1, 6.8.0-3.a.1.2, 9.12.0.a.1, 18.24.0-9.a.1.2, 22.2.0.a.1, $\ldots$
1232.d3 1232.d \( 2^{4} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $0.356556453$ $[0, -1, 0, 7051, 1019197]$ \(y^2=x^3-x^2+7051x+1019197\) 3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.2, 22.2.0.a.1, 36.24.0-9.a.1.1, $\ldots$
1925.f3 1925.f \( 5^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $4.444628332$ $[0, -1, 1, 11017, -1998882]$ \(y^2+y=x^3-x^2+11017x-1998882\) 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 22.2.0.a.1, 45.24.0-9.a.1.2, $\ldots$
4851.k3 4851.k \( 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 194334, -147821081]$ \(y^2+y=x^3+194334x-147821081\) 3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.1, 22.2.0.a.1, 63.72.0-63.e.2.1, $\ldots$
4928.i3 4928.i \( 2^{6} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $0.390483623$ $[0, -1, 0, 1763, -128281]$ \(y^2=x^3-x^2+1763x-128281\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 24.8.0-3.a.1.1, 63.36.0.e.2, $\ldots$
4928.x3 4928.x \( 2^{6} \cdot 7 \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 1763, 128281]$ \(y^2=x^3+x^2+1763x+128281\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 24.8.0-3.a.1.3, 63.36.0.e.2, $\ldots$
5929.d3 5929.d \( 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $3.428115269$ $[0, -1, 1, 2612713, -7287902700]$ \(y^2+y=x^3-x^2+2612713x-7287902700\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 42.8.0-3.a.1.1, 63.36.0.e.2, $\ldots$
7623.i3 7623.i \( 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $6.706046397$ $[0, 0, 1, 479886, -573614748]$ \(y^2+y=x^3+479886x-573614748\) 3.4.0.a.1, 6.8.0-3.a.1.1, 9.12.0.a.1, 18.24.0-9.a.1.1, 22.2.0.a.1, $\ldots$
8624.s3 8624.s \( 2^{4} \cdot 7^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 345483, -350275549]$ \(y^2=x^3+x^2+345483x-350275549\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 63.36.0.e.2, 66.8.0.a.1, $\ldots$
11088.b3 11088.b \( 2^{4} \cdot 3^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $10.89268220$ $[0, 0, 0, 63456, -27581776]$ \(y^2=x^3+63456x-27581776\) 3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.1, 22.2.0.a.1, 36.24.0-9.a.1.2, $\ldots$
13013.j3 13013.j \( 7 \cdot 11 \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $1.058421891$ $[0, 1, 1, 74473, -35042978]$ \(y^2+y=x^3+x^2+74473x-35042978\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 39.8.0-3.a.1.2, 63.36.0.e.2, $\ldots$
13475.n3 13475.n \( 5^{2} \cdot 7^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 539817, 684536794]$ \(y^2+y=x^3+x^2+539817x+684536794\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 63.36.0.e.2, 66.8.0.a.1, $\ldots$
13552.i3 13552.i \( 2^{4} \cdot 7 \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 853131, -1359963779]$ \(y^2=x^3-x^2+853131x-1359963779\) 3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.4, 22.2.0.a.1, 36.24.0-9.a.1.3, $\ldots$
17325.y3 17325.y \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $1.095802980$ $[0, 0, 1, 99150, 53870656]$ \(y^2+y=x^3+99150x+53870656\) 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 22.2.0.a.1, 45.24.0-9.a.1.1, $\ldots$
21175.t3 21175.t \( 5^{2} \cdot 7 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $3.077885547$ $[0, -1, 1, 1333017, 2655179493]$ \(y^2+y=x^3-x^2+1333017x+2655179493\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 30.8.0-3.a.1.2, 63.36.0.e.2, $\ldots$
22253.e3 22253.e \( 7 \cdot 11 \cdot 17^{2} \) $2$ $\mathsf{trivial}$ $0.951678605$ $[0, -1, 1, 127353, -78462165]$ \(y^2+y=x^3-x^2+127353x-78462165\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 51.8.0-3.a.1.1, 63.36.0.e.2, $\ldots$
27797.d3 27797.d \( 7 \cdot 11 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $6.244421456$ $[0, -1, 1, 159081, 109428108]$ \(y^2+y=x^3-x^2+159081x+109428108\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 57.8.0-3.a.1.2, 63.36.0.e.2, $\ldots$
30800.ci3 30800.ci \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 176267, 127752163]$ \(y^2=x^3+x^2+176267x+127752163\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 60.8.0-3.a.1.1, 63.36.0.e.2, $\ldots$
34496.bn3 34496.bn \( 2^{6} \cdot 7^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $19.51412288$ $[0, -1, 0, 86371, -43827629]$ \(y^2=x^3-x^2+86371x-43827629\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 63.36.0.e.2, 66.8.0.a.1, $\ldots$
34496.cu3 34496.cu \( 2^{6} \cdot 7^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $2.257488167$ $[0, 1, 0, 86371, 43827629]$ \(y^2=x^3+x^2+86371x+43827629\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 63.36.0.e.2, 66.8.0.a.1, $\ldots$
40733.g3 40733.g \( 7 \cdot 11 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $1.046558017$ $[0, 1, 1, 233113, 194283415]$ \(y^2+y=x^3+x^2+233113x+194283415\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 63.36.0.e.2, 66.8.0.a.1, $\ldots$
44352.et3 44352.et \( 2^{6} \cdot 3^{2} \cdot 7 \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 15864, -3447722]$ \(y^2=x^3+15864x-3447722\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 24.8.0-3.a.1.4, 63.36.0.e.2, $\ldots$
44352.ev3 44352.ev \( 2^{6} \cdot 3^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $13.24111175$ $[0, 0, 0, 15864, 3447722]$ \(y^2=x^3+15864x+3447722\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 24.8.0-3.a.1.2, 63.36.0.e.2, $\ldots$
53361.bi3 53361.bi \( 3^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 23514414, 196749858478]$ \(y^2+y=x^3+23514414x+196749858478\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 42.8.0-3.a.1.2, 63.36.0.e.2, $\ldots$
54208.v3 54208.v \( 2^{6} \cdot 7 \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 213283, 169888831]$ \(y^2=x^3-x^2+213283x+169888831\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 24.8.0-3.a.1.5, 63.36.0.e.2, $\ldots$
54208.bz3 54208.bz \( 2^{6} \cdot 7 \cdot 11^{2} \) $2$ $\mathsf{trivial}$ $11.13401712$ $[0, 1, 0, 213283, -169888831]$ \(y^2=x^3+x^2+213283x-169888831\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 24.8.0-3.a.1.7, 63.36.0.e.2, $\ldots$
64757.e3 64757.e \( 7 \cdot 11 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $1.424884214$ $[0, -1, 1, 370601, -389412848]$ \(y^2+y=x^3-x^2+370601x-389412848\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 63.36.0.e.2, 66.8.0.a.1, $\ldots$
73997.c3 73997.c \( 7 \cdot 11 \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 423481, 475373127]$ \(y^2+y=x^3-x^2+423481x+475373127\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 63.36.0.e.2, 66.8.0.a.1, $\ldots$
77616.gh3 77616.gh \( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 3109344, 9460549168]$ \(y^2=x^3+3109344x+9460549168\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 63.36.0.e.2, 66.8.0.a.1, $\ldots$
91091.h3 91091.h \( 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.997181109$ $[0, -1, 1, 3649161, 12027039702]$ \(y^2+y=x^3-x^2+3649161x+12027039702\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 63.36.0.e.2, 66.8.0.a.1, $\ldots$
94864.cd3 94864.cd \( 2^{4} \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 41803403, 466383969379]$ \(y^2=x^3+x^2+41803403x+466383969379\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 63.36.0.e.2, 66.8.0.a.1, $\ldots$
105413.d3 105413.d \( 7 \cdot 11 \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 603273, -808305680]$ \(y^2+y=x^3+x^2+603273x-808305680\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 63.36.0.e.2, 66.8.0.a.1, $\ldots$
117117.bg3 117117.bg \( 3^{2} \cdot 7 \cdot 11 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 670254, 946830654]$ \(y^2+y=x^3+670254x+946830654\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 39.8.0-3.a.1.1, 63.36.0.e.2, $\ldots$
121275.dn3 121275.dn \( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 4858350, -18477635094]$ \(y^2+y=x^3+4858350x-18477635094\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 63.36.0.e.2, 66.8.0.a.1, $\ldots$
121968.s3 121968.s \( 2^{4} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $10.41514181$ $[0, 0, 0, 7678176, 36711343856]$ \(y^2=x^3+7678176x+36711343856\) 3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.3, 22.2.0.a.1, 36.24.0-9.a.1.4, $\ldots$
123200.cj3 123200.cj \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $11.29524805$ $[0, -1, 0, 44067, 15946987]$ \(y^2=x^3-x^2+44067x+15946987\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 63.36.0.e.2, 66.8.0.a.1, $\ldots$
123200.fp3 123200.fp \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 44067, -15946987]$ \(y^2=x^3+x^2+44067x-15946987\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 63.36.0.e.2, 66.8.0.a.1, $\ldots$
129437.c3 129437.c \( 7 \cdot 11 \cdot 41^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 740761, -1100341587]$ \(y^2+y=x^3-x^2+740761x-1100341587\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 63.36.0.e.2, 66.8.0.a.1, $\ldots$
142373.f3 142373.f \( 7 \cdot 11 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 814793, 1268793370]$ \(y^2+y=x^3-x^2+814793x+1268793370\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 63.36.0.e.2, 66.8.0.a.1, $\ldots$
143143.v3 143143.v \( 7 \cdot 11^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $9.839940900$ $[0, 1, 1, 9011193, 46678248205]$ \(y^2+y=x^3+x^2+9011193x+46678248205\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 63.36.0.e.2, 66.8.0.a.1, $\ldots$
148225.bp3 148225.bp \( 5^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $34.86248704$ $[0, 1, 1, 65317817, -910857201831]$ \(y^2+y=x^3+x^2+65317817x-910857201831\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 63.36.0.e.2, 66.8.0.a.1, $\ldots$
155771.u3 155771.u \( 7^{2} \cdot 11 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $3.658961147$ $[0, 1, 1, 6240281, 26900041935]$ \(y^2+y=x^3+x^2+6240281x+26900041935\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 63.36.0.e.2, 66.8.0.a.1, $\ldots$
170093.c3 170093.c \( 7 \cdot 11 \cdot 47^{2} \) $2$ $\mathsf{trivial}$ $1.308980482$ $[0, 1, 1, 973433, 1657513557]$ \(y^2+y=x^3+x^2+973433x+1657513557\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 63.36.0.e.2, 66.8.0.a.1, $\ldots$
190575.cr3 190575.cr \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 11997150, -71701843469]$ \(y^2+y=x^3+11997150x-71701843469\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 30.8.0-3.a.1.1, 63.36.0.e.2, $\ldots$
194579.j3 194579.j \( 7^{2} \cdot 11 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $24.35312345$ $[0, 1, 1, 7794953, -37549431048]$ \(y^2+y=x^3+x^2+7794953x-37549431048\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 63.36.0.e.2, 66.8.0.a.1, $\ldots$
200277.r3 200277.r \( 3^{2} \cdot 7 \cdot 11 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 1146174, 2117332273]$ \(y^2+y=x^3+1146174x+2117332273\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 51.8.0-3.a.1.2, 63.36.0.e.2, $\ldots$
208208.o3 208208.o \( 2^{4} \cdot 7 \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $5.059389257$ $[0, -1, 0, 1191563, 2243942141]$ \(y^2=x^3-x^2+1191563x+2243942141\) 3.4.0.a.1, 9.12.0.a.1, 22.2.0.a.1, 63.36.0.e.2, 66.8.0.a.1, $\ldots$
Next   displayed columns for results