Show commands: SageMath
                    
            
    Rank
The elliptic curves in class 221778v have rank \(1\).
L-function data
| Bad L-factors: | 
        
  | ||||||||||||||||||||||||||||||
| Good L-factors: | 
        
  | ||||||||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 221778v do not have complex multiplication.Modular form 221778.2.a.v
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 3 & 7 & 21 \\ 3 & 1 & 21 & 7 \\ 7 & 21 & 1 & 3 \\ 21 & 7 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 221778v
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | 
|---|---|---|---|---|---|---|---|---|
| 221778.h3 | 221778v1 | \([1, -1, 0, -6417, 208965]\) | \(-140625/8\) | \(-1662590713032\) | \([]\) | \(308448\) | \(1.1019\) | \(\Gamma_0(N)\)-optimal | 
| 221778.h4 | 221778v2 | \([1, -1, 0, 34653, 375983]\) | \(3375/2\) | \(-2727064417050738\) | \([]\) | \(925344\) | \(1.6512\) | |
| 221778.h2 | 221778v3 | \([1, -1, 0, -129627, -36458331]\) | \(-1159088625/2097152\) | \(-435838179877060608\) | \([]\) | \(2159136\) | \(2.0748\) | |
| 221778.h1 | 221778v4 | \([1, -1, 0, -13272027, -18607019995]\) | \(-189613868625/128\) | \(-174532122691247232\) | \([]\) | \(6477408\) | \(2.6241\) |