Properties

Label 220.a
Number of curves $4$
Conductor $220$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 220.a have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 220.a do not have complex multiplication.

Modular form 220.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} + q^{5} - 4 q^{7} + q^{9} - q^{11} - 4 q^{13} - 2 q^{15} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 220.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
220.a1 220a4 \([0, 1, 0, -7100, -232652]\) \(154639330142416/33275\) \(8518400\) \([2]\) \(216\) \(0.71445\)  
220.a2 220a3 \([0, 1, 0, -445, -3720]\) \(610462990336/8857805\) \(141724880\) \([2]\) \(108\) \(0.36788\)  
220.a3 220a2 \([0, 1, 0, -100, -252]\) \(436334416/171875\) \(44000000\) \([6]\) \(72\) \(0.16514\)  
220.a4 220a1 \([0, 1, 0, -45, 100]\) \(643956736/15125\) \(242000\) \([6]\) \(36\) \(-0.18143\) \(\Gamma_0(N)\)-optimal