Properties

Label 21840y
Number of curves $4$
Conductor $21840$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 21840y have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(7\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 21840y do not have complex multiplication.

Modular form 21840.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - q^{7} + q^{9} - q^{13} + q^{15} + 2 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 21840y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
21840.e3 21840y1 \([0, -1, 0, -9896, -374160]\) \(26168974809769/117411840\) \(480918896640\) \([2]\) \(36864\) \(1.0933\) \(\Gamma_0(N)\)-optimal
21840.e2 21840y2 \([0, -1, 0, -15016, 60016]\) \(91422999252649/52587662400\) \(215399065190400\) \([2, 2]\) \(73728\) \(1.4399\)  
21840.e4 21840y3 \([0, -1, 0, 59864, 419440]\) \(5792335463322071/3372408585000\) \(-13813385564160000\) \([2]\) \(147456\) \(1.7865\)  
21840.e1 21840y4 \([0, -1, 0, -171816, 27405936]\) \(136948444639063849/367281893160\) \(1504386634383360\) \([2]\) \(147456\) \(1.7865\)