Properties

Label 21840.g
Number of curves $4$
Conductor $21840$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 21840.g have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(7\)\(1 + T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 21840.g do not have complex multiplication.

Modular form 21840.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - q^{7} + q^{9} + q^{13} + q^{15} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 21840.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
21840.g1 21840bb4 \([0, -1, 0, -66396, 4853196]\) \(126449185587012304/33791748046875\) \(8650687500000000\) \([2]\) \(124416\) \(1.7664\)  
21840.g2 21840bb2 \([0, -1, 0, -23556, -1383300]\) \(5646857395652944/2031631875\) \(520097760000\) \([2]\) \(41472\) \(1.2170\)  
21840.g3 21840bb1 \([0, -1, 0, -1261, -27764]\) \(-13870539341824/13420809675\) \(-214732954800\) \([2]\) \(20736\) \(0.87047\) \(\Gamma_0(N)\)-optimal
21840.g4 21840bb3 \([0, -1, 0, 10499, 485560]\) \(7998456195055616/11086576921875\) \(-177385230750000\) \([2]\) \(62208\) \(1.4198\)