Properties

Label 2178.m
Number of curves $4$
Conductor $2178$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("m1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 2178.m have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2178.m do not have complex multiplication.

Modular form 2178.2.a.m

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + 4 q^{5} + 2 q^{7} + q^{8} + 4 q^{10} - 4 q^{13} + 2 q^{14} + q^{16} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 5 & 10 \\ 2 & 1 & 10 & 5 \\ 5 & 10 & 1 & 2 \\ 10 & 5 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 2178.m

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2178.m1 2178m3 \([1, -1, 1, -10960808, -13964543161]\) \(112763292123580561/1932612\) \(2495906494505028\) \([2]\) \(96000\) \(2.4961\)  
2178.m2 2178m4 \([1, -1, 1, -10949918, -13993684801]\) \(-112427521449300721/466873642818\) \(-602952355269793896642\) \([2]\) \(192000\) \(2.8427\)  
2178.m3 2178m1 \([1, -1, 1, -49028, 3057959]\) \(10091699281/2737152\) \(3534944134284288\) \([2]\) \(19200\) \(1.6914\) \(\Gamma_0(N)\)-optimal
2178.m4 2178m2 \([1, -1, 1, 125212, 19784999]\) \(168105213359/228637728\) \(-295278302216934432\) \([2]\) \(38400\) \(2.0380\)