Learn more

Refine search


Results (21 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
2175.a1 2175.a \( 3 \cdot 5^{2} \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -698, -7336]$ \(y^2+y=x^3+x^2-698x-7336\) 5.24.0-5.a.2.2, 870.48.1.?
2175.a2 2175.a \( 3 \cdot 5^{2} \cdot 29 \) $0$ $\Z/5\Z$ $1$ $[0, 1, 1, 1152, -34486]$ \(y^2+y=x^3+x^2+1152x-34486\) 5.24.0-5.a.1.2, 870.48.1.?
2175.b1 2175.b \( 3 \cdot 5^{2} \cdot 29 \) $2$ $\Z/2\Z$ $0.482474972$ $[1, 1, 1, -6438, -198594]$ \(y^2+xy+y=x^3+x^2-6438x-198594\) 2.3.0.a.1, 4.12.0-4.c.1.2, 10.6.0.a.1, 20.24.0-20.g.1.1, 232.24.0.?, $\ldots$
2175.b2 2175.b \( 3 \cdot 5^{2} \cdot 29 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $1.929899890$ $[1, 1, 1, -813, 3906]$ \(y^2+xy+y=x^3+x^2-813x+3906\) 2.6.0.a.1, 4.12.0-2.a.1.1, 20.24.0-20.b.1.2, 116.24.0.?, 580.48.0.?
2175.b3 2175.b \( 3 \cdot 5^{2} \cdot 29 \) $2$ $\Z/4\Z$ $1.929899890$ $[1, 1, 1, -688, 6656]$ \(y^2+xy+y=x^3+x^2-688x+6656\) 2.3.0.a.1, 4.12.0-4.c.1.1, 40.24.0-40.z.1.4, 232.24.0.?, 290.6.0.?, $\ldots$
2175.b4 2175.b \( 3 \cdot 5^{2} \cdot 29 \) $2$ $\Z/2\Z$ $1.929899890$ $[1, 1, 1, 2812, 32906]$ \(y^2+xy+y=x^3+x^2+2812x+32906\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 20.12.0-4.c.1.2, 40.24.0-40.z.1.10, $\ldots$
2175.c1 2175.c \( 3 \cdot 5^{2} \cdot 29 \) $1$ $\Z/2\Z$ $0.319074969$ $[1, 1, 1, -243, 1356]$ \(y^2+xy+y=x^3+x^2-243x+1356\) 2.3.0.a.1, 10.6.0.a.1, 116.6.0.?, 580.12.0.?
2175.c2 2175.c \( 3 \cdot 5^{2} \cdot 29 \) $1$ $\Z/2\Z$ $0.638149939$ $[1, 1, 1, -18, 6]$ \(y^2+xy+y=x^3+x^2-18x+6\) 2.3.0.a.1, 20.6.0.c.1, 116.6.0.?, 290.6.0.?, 580.12.0.?
2175.d1 2175.d \( 3 \cdot 5^{2} \cdot 29 \) $1$ $\mathsf{trivial}$ $0.269557008$ $[0, -1, 1, -283, 1968]$ \(y^2+y=x^3-x^2-283x+1968\) 3.4.0.a.1, 15.8.0-3.a.1.2, 174.8.0.?, 870.16.0.?
2175.d2 2175.d \( 3 \cdot 5^{2} \cdot 29 \) $1$ $\mathsf{trivial}$ $0.808671026$ $[0, -1, 1, 1217, 7593]$ \(y^2+y=x^3-x^2+1217x+7593\) 3.4.0.a.1, 15.8.0-3.a.1.1, 174.8.0.?, 870.16.0.?
2175.e1 2175.e \( 3 \cdot 5^{2} \cdot 29 \) $1$ $\mathsf{trivial}$ $0.424252168$ $[0, -1, 1, -3833, 101318]$ \(y^2+y=x^3-x^2-3833x+101318\) 6.2.0.a.1
2175.f1 2175.f \( 3 \cdot 5^{2} \cdot 29 \) $1$ $\mathsf{trivial}$ $0.109229930$ $[0, 1, 1, -153, 749]$ \(y^2+y=x^3+x^2-153x+749\) 6.2.0.a.1
2175.g1 2175.g \( 3 \cdot 5^{2} \cdot 29 \) $1$ $\mathsf{trivial}$ $0.436544531$ $[0, 1, 1, 1967, -136406]$ \(y^2+y=x^3+x^2+1967x-136406\) 870.2.0.?
2175.h1 2175.h \( 3 \cdot 5^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -174000, -28009125]$ \(y^2+xy=x^3+x^2-174000x-28009125\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.o.1, 20.12.0-4.c.1.1, 40.24.0-8.o.1.3, $\ldots$
2175.h2 2175.h \( 3 \cdot 5^{2} \cdot 29 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -10875, -441000]$ \(y^2+xy=x^3+x^2-10875x-441000\) 2.6.0.a.1, 4.12.0.a.1, 20.24.0-4.a.1.1, 24.24.0.j.1, 116.24.0.?, $\ldots$
2175.h3 2175.h \( 3 \cdot 5^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -9750, -534375]$ \(y^2+xy=x^3+x^2-9750x-534375\) 2.3.0.a.1, 4.12.0.d.1, 20.24.0-4.d.1.1, 24.24.0.z.1, 120.48.0.?, $\ldots$
2175.h4 2175.h \( 3 \cdot 5^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -750, -5625]$ \(y^2+xy=x^3+x^2-750x-5625\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.o.1, 20.12.0-4.c.1.2, 40.24.0-8.o.1.1, $\ldots$
2175.i1 2175.i \( 3 \cdot 5^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -6076, 181673]$ \(y^2+xy+y=x^3-6076x+181673\) 2.3.0.a.1, 10.6.0.a.1, 116.6.0.?, 580.12.0.?
2175.i2 2175.i \( 3 \cdot 5^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -451, 1673]$ \(y^2+xy+y=x^3-451x+1673\) 2.3.0.a.1, 20.6.0.c.1, 116.6.0.?, 290.6.0.?, 580.12.0.?
2175.j1 2175.j \( 3 \cdot 5^{2} \cdot 29 \) $1$ $\mathsf{trivial}$ $11.92681209$ $[0, -1, 1, -17458, -882057]$ \(y^2+y=x^3-x^2-17458x-882057\) 5.24.0-5.a.2.1, 870.48.1.?
2175.j2 2175.j \( 3 \cdot 5^{2} \cdot 29 \) $1$ $\mathsf{trivial}$ $2.385362418$ $[0, -1, 1, 28792, -4368307]$ \(y^2+y=x^3-x^2+28792x-4368307\) 5.24.0-5.a.1.1, 870.48.1.?
  displayed columns for results