Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+y=x^3-x^2-17458x-882057\) | (homogenize, simplify) |
\(y^2z+yz^2=x^3-x^2z-17458xz^2-882057z^3\) | (dehomogenize, simplify) |
\(y^2=x^3-22626000x-41424750000\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = | \(\left(\frac{1180533}{6724}, \frac{659971191}{551368}\right)\) |
$\hat{h}(P)$ | ≈ | $11.926812093367996945759783925$ |
Integral points
None
Invariants
Conductor: | \( 2175 \) | = | $3 \cdot 5^{2} \cdot 29$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $-169921875 $ | = | $-1 \cdot 3 \cdot 5^{9} \cdot 29 $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( -\frac{301302001664}{87} \) | = | $-1 \cdot 2^{12} \cdot 3^{-1} \cdot 29^{-1} \cdot 419^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $0.94601896826893770277856983121\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $-0.26105946605663757817199966871\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $1.198475926679224\dots$ | |||
Szpiro ratio: | $5.324329341989361\dots$ |
BSD invariants
Analytic rank: | $1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $11.926812093367996945759783925\dots$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $0.20766765372555764060791634036\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 2 $ = $ 1\cdot2\cdot1 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $1$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ ( rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L'(E,1) $ ≈ $ 4.9536261677106768669503002101 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 4.953626168 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.207668 \cdot 11.926812 \cdot 2}{1^2} \approx 4.953626168$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 4560 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $v_p(N)$ | $v_p(\Delta)$ | $v_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$5$ | $2$ | $III^{*}$ | additive | -1 | 2 | 9 | 0 |
$29$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$5$ | 5B.1.3 | 5.24.0.4 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 870 = 2 \cdot 3 \cdot 5 \cdot 29 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 581 & 10 \\ 295 & 51 \end{array}\right),\left(\begin{array}{rr} 863 & 860 \\ 805 & 429 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 31 & 10 \\ 155 & 51 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 815 & 751 \end{array}\right),\left(\begin{array}{rr} 861 & 10 \\ 860 & 11 \end{array}\right)$.
The torsion field $K:=\Q(E[870])$ is a degree-$1964390400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/870\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$3$ | nonsplit multiplicative | $4$ | \( 725 = 5^{2} \cdot 29 \) |
$5$ | additive | $14$ | \( 87 = 3 \cdot 29 \) |
$29$ | split multiplicative | $30$ | \( 75 = 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 2175f
consists of 2 curves linked by isogenies of
degree 5.
Twists
The minimal quadratic twist of this elliptic curve is 2175j1, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.1740.1 | \(\Z/2\Z\) | not in database |
$4$ | \(\Q(\zeta_{5})\) | \(\Z/5\Z\) | not in database |
$6$ | 6.0.1317006000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | 8.2.1957698551671875.1 | \(\Z/3\Z\) | not in database |
$10$ | 10.2.256415368393525078125.1 | \(\Z/5\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/10\Z\) | not in database |
$20$ | 20.0.328744205741935898020816185566436767578125.1 | \(\Z/5\Z \oplus \Z/5\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ss | nonsplit | add | ord | ord | ord | ord | ss | ord | split | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 1,8 | 1 | - | 3 | 1 | 1 | 1 | 1,1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0,0 | 0 | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.