Properties

Label 215600gv
Number of curves $2$
Conductor $215600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("gv1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 215600gv have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 215600gv do not have complex multiplication.

Modular form 215600.2.a.gv

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{9} + q^{11} - 6 q^{13} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 215600gv

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
215600.dx2 215600gv1 \([0, 0, 0, 104125, 3687250]\) \(66325500/41503\) \(-78124583152000000\) \([2]\) \(1327104\) \(1.9305\) \(\Gamma_0(N)\)-optimal
215600.dx1 215600gv2 \([0, 0, 0, -434875, 30098250]\) \(2415899250/1294139\) \(4872133094752000000\) \([2]\) \(2654208\) \(2.2771\)