Properties

Label 214896bf
Number of curves $1$
Conductor $214896$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bf1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 214896bf1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(11\)\(1\)
\(37\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 214896bf do not have complex multiplication.

Modular form 214896.2.a.bf

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 4 q^{7} + q^{9} + 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 214896bf

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
214896.x1 214896bf1 \([0, -1, 0, 37712, -6859136]\) \(6755375/26973\) \(-23682670990184448\) \([]\) \(1419264\) \(1.8246\) \(\Gamma_0(N)\)-optimal