Show commands: SageMath
Rank
The elliptic curves in class 21450cq have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 21450cq do not have complex multiplication.Modular form 21450.2.a.cq
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 21450cq
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 21450.cr4 | 21450cq1 | \([1, 0, 0, -43739213, 40767414417]\) | \(592265697637387401314569/296787655248366796800\) | \(4637307113255731200000000\) | \([2]\) | \(4055040\) | \(3.4258\) | \(\Gamma_0(N)\)-optimal |
| 21450.cr2 | 21450cq2 | \([1, 0, 0, -568027213, 5206577078417]\) | \(1297212465095901089487274249/1193746061037404160000\) | \(18652282203709440000000000\) | \([2, 2]\) | \(8110080\) | \(3.7724\) | |
| 21450.cr3 | 21450cq3 | \([1, 0, 0, -438235213, 7649132726417]\) | \(-595697118196750093952139529/1272946549598037600000000\) | \(-19889789837469337500000000000\) | \([2]\) | \(16220160\) | \(4.1189\) | |
| 21450.cr1 | 21450cq4 | \([1, 0, 0, -9086427213, 333377937078417]\) | \(5309860874757074224246393258249/4502770931800627200\) | \(70355795809384800000000\) | \([2]\) | \(16220160\) | \(4.1189\) |