Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-568027213x+5206577078417\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-568027213xz^2+5206577078417z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-736163268075x+242920268660427750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(3458, 1810367)$ | $0.54078839734513380361014990145$ | $\infty$ |
| $(-27518, 13759)$ | $0$ | $2$ |
| $(13442, -6721)$ | $0$ | $2$ |
Integral points
\( \left(-27518, 13759\right) \), \( \left(-8158, 3053279\right) \), \( \left(-8158, -3045121\right) \), \( \left(3458, 1810367\right) \), \( \left(3458, -1813825\right) \), \( \left(13286, 64259\right) \), \( \left(13286, -77545\right) \), \( \left(13442, -6721\right) \), \( \left(16042, 463879\right) \), \( \left(16042, -479921\right) \), \( \left(27482, 3203759\right) \), \( \left(27482, -3231241\right) \), \( \left(60482, 13829759\right) \), \( \left(60482, -13890241\right) \), \( \left(179842, 75538879\right) \), \( \left(179842, -75718721\right) \)
Invariants
| Conductor: | $N$ | = | \( 21450 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $18652282203709440000000000$ | = | $2^{22} \cdot 3^{2} \cdot 5^{10} \cdot 11^{6} \cdot 13^{4} $ |
|
| j-invariant: | $j$ | = | \( \frac{1297212465095901089487274249}{1193746061037404160000} \) | = | $2^{-22} \cdot 3^{-2} \cdot 5^{-4} \cdot 11^{-6} \cdot 13^{-4} \cdot 2281^{3} \cdot 478129^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.7723558826811604880098786141$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.9676369264641103007094989475$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.033810483667816$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.227832535566502$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.54078839734513380361014990145$ |
|
| Real period: | $\Omega$ | ≈ | $0.068407235786560399335686664647$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4224 $ = $ ( 2 \cdot 11 )\cdot2\cdot2^{2}\cdot( 2 \cdot 3 )\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $9.7663736036657160432210221975 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 9.766373604 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.068407 \cdot 0.540788 \cdot 4224}{4^2} \\ & \approx 9.766373604\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 8110080 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $22$ | $I_{22}$ | split multiplicative | -1 | 1 | 22 | 22 |
| $3$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $5$ | $4$ | $I_{4}^{*}$ | additive | 1 | 2 | 10 | 4 |
| $11$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
| $13$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 2.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 861 & 530 \\ 520 & 1051 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 263 & 0 \\ 0 & 1319 \end{array}\right),\left(\begin{array}{rr} 1201 & 530 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1191 & 530 \\ 790 & 791 \end{array}\right),\left(\begin{array}{rr} 1317 & 4 \\ 1316 & 5 \end{array}\right),\left(\begin{array}{rr} 881 & 1060 \\ 970 & 801 \end{array}\right)$.
The torsion field $K:=\Q(E[1320])$ is a degree-$9732096000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1320\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 25 = 5^{2} \) |
| $3$ | split multiplicative | $4$ | \( 650 = 2 \cdot 5^{2} \cdot 13 \) |
| $5$ | additive | $18$ | \( 858 = 2 \cdot 3 \cdot 11 \cdot 13 \) |
| $11$ | split multiplicative | $12$ | \( 975 = 3 \cdot 5^{2} \cdot 13 \) |
| $13$ | split multiplicative | $14$ | \( 1650 = 2 \cdot 3 \cdot 5^{2} \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 21450.cr
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 4290.b2, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $4$ | \(\Q(\sqrt{15}, \sqrt{33})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-10}, \sqrt{22})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-6}, \sqrt{10})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.2.1264873866750000.9 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | 16.0.2359562117249079705600000000.21 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | split | add | ss | split | split | ord | ss | ord | ord | ss | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 3 | 2 | - | 3,1 | 2 | 2 | 1 | 1,1 | 1 | 1 | 1,1 | 3 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | 0 | - | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.