Learn more

Refine search


Results (20 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
4290.b2 4290.b \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -22721088, 41643528192]$ \(y^2+xy=x^3+x^2-22721088x+41643528192\) 2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 24.24.0-24.a.1.3, 44.12.0-2.a.1.1, $\ldots$ $[ ]$
12870.bx2 12870.bx \( 2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -204489797, -1124579750979]$ \(y^2+xy+y=x^3-x^2-204489797x-1124579750979\) 2.6.0.a.1, 4.12.0-2.a.1.1, 24.24.0-24.a.1.4, 88.24.0.?, 132.24.0.?, $\ldots$ $[ ]$
21450.cr2 21450.cr \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.540788397$ $[1, 0, 0, -568027213, 5206577078417]$ \(y^2+xy=x^3-568027213x+5206577078417\) 2.6.0.a.1, 24.12.0.a.1, 40.12.0-2.a.1.1, 60.12.0-2.a.1.1, 88.12.0.?, $\ldots$ $[(3458, 1810367)]$
34320.bl2 34320.bl \( 2^{4} \cdot 3 \cdot 5 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $47.93178543$ $[0, 1, 0, -363537416, -2665912879116]$ \(y^2=x^3+x^2-363537416x-2665912879116\) 2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 24.24.0-24.a.1.2, 44.12.0-2.a.1.1, $\ldots$ $[(58976477708714639257108/1472153593, 8792114115033617659409121737718006/1472153593)]$
47190.bs2 47190.bs \( 2 \cdot 3 \cdot 5 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -2749251711, -55441282282011]$ \(y^2+xy+y=x^3+x^2-2749251711x-55441282282011\) 2.6.0.a.1, 4.12.0-2.a.1.1, 24.24.0-24.a.1.6, 88.24.0.?, 132.24.0.?, $\ldots$ $[ ]$
55770.ci2 55770.ci \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.421843694$ $[1, 1, 1, -3839863960, 91510030757465]$ \(y^2+xy+y=x^3+x^2-3839863960x+91510030757465\) 2.6.0.a.1, 24.12.0.a.1, 88.12.0.?, 104.12.0.?, 132.12.0.?, $\ldots$ $[(36613, 35773)]$
64350.bi2 64350.bi \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $16.18805463$ $[1, -1, 0, -5112244917, -140577581117259]$ \(y^2+xy=x^3-x^2-5112244917x-140577581117259\) 2.6.0.a.1, 20.12.0-2.a.1.1, 24.12.0.a.1, 88.12.0.?, 120.24.0.?, $\ldots$ $[(39854049729/89, 7953673002283047/89)]$
102960.dk2 102960.dk \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.266778371$ $[0, 0, 0, -3271836747, 71976375899386]$ \(y^2=x^3-3271836747x+71976375899386\) 2.6.0.a.1, 4.12.0-2.a.1.1, 24.24.0-24.a.1.1, 88.24.0.?, 132.24.0.?, $\ldots$ $[(31967, 228690)]$
137280.cz2 137280.cz \( 2^{6} \cdot 3 \cdot 5 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $6.106919640$ $[0, -1, 0, -1454149665, -21325848883263]$ \(y^2=x^3-x^2-1454149665x-21325848883263\) 2.6.0.a.1, 4.12.0-2.a.1.1, 24.24.0-24.a.1.1, 88.24.0.?, 132.24.0.?, $\ldots$ $[(480839, 332343440)]$
137280.gn2 137280.gn \( 2^{6} \cdot 3 \cdot 5 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -1454149665, 21325848883263]$ \(y^2=x^3+x^2-1454149665x+21325848883263\) 2.6.0.a.1, 4.12.0-2.a.1.1, 24.24.0-24.a.1.4, 88.24.0.?, 132.24.0.?, $\ldots$ $[ ]$
141570.ce2 141570.ce \( 2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $7.461942217$ $[1, -1, 0, -24743265399, 1496889878348893]$ \(y^2+xy=x^3-x^2-24743265399x+1496889878348893\) 2.6.0.a.1, 8.12.0-2.a.1.2, 12.12.0-2.a.1.1, 24.24.0-24.a.1.5, 44.12.0-2.a.1.1, $\ldots$ $[(87743, 1119986)]$
167310.q2 167310.q \( 2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $15.63437563$ $[1, -1, 0, -34558775640, -2470805389227200]$ \(y^2+xy=x^3-x^2-34558775640x-2470805389227200\) 2.6.0.a.1, 24.12.0.a.1, 52.12.0-2.a.1.1, 88.12.0.?, 132.12.0.?, $\ldots$ $[(2908616435/97, 116692411025915/97)]$
171600.cg2 171600.cg \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $19.96657340$ $[0, -1, 0, -9088435408, -333220933018688]$ \(y^2=x^3-x^2-9088435408x-333220933018688\) 2.6.0.a.1, 24.12.0.a.1, 40.12.0-2.a.1.1, 60.12.0-2.a.1.1, 88.12.0.?, $\ldots$ $[(30116395842/191, 5189894648623750/191)]$
210210.ck2 210210.ck \( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -1113333338, -14287070169844]$ \(y^2+xy+y=x^3-1113333338x-14287070169844\) 2.6.0.a.1, 24.12.0.a.1, 56.12.0-2.a.1.1, 84.12.0.?, 88.12.0.?, $\ldots$ $[ ]$
235950.di2 235950.di \( 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $102.3641613$ $[1, 0, 1, -68731292776, -6930022822665802]$ \(y^2+xy+y=x^3-68731292776x-6930022822665802\) 2.6.0.a.1, 20.12.0-2.a.1.1, 24.12.0.a.1, 88.12.0.?, 120.24.0.?, $\ldots$ $[(124488400877636366416623397558454888416534086328/277835305671103052107, 43284792108841837446954318352331395971371247285579786778421016816231743/277835305671103052107)]$
278850.db2 278850.db \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -95996599001, 11438945837881148]$ \(y^2+xy+y=x^3-95996599001x+11438945837881148\) 2.6.0.a.1, 24.12.0.a.1, 88.12.0.?, 132.12.0.?, 264.24.0.?, $\ldots$ $[ ]$
377520.ex2 377520.ex \( 2^{4} \cdot 3 \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $24.92262735$ $[0, 1, 0, -43988027376, 3548154089993940]$ \(y^2=x^3+x^2-43988027376x+3548154089993940\) 2.6.0.a.1, 4.12.0-2.a.1.1, 24.24.0-24.a.1.6, 88.24.0.?, 132.24.0.?, $\ldots$ $[(1535168676339/3707, 270875978414289612/3707)]$
411840.dd2 411840.dd \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -13087346988, 575811007195088]$ \(y^2=x^3-13087346988x+575811007195088\) 2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 24.24.0-24.a.1.2, 44.12.0-2.a.1.2, $\ldots$ $[ ]$
411840.dr2 411840.dr \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -13087346988, -575811007195088]$ \(y^2=x^3-13087346988x-575811007195088\) 2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 24.24.0-24.a.1.3, 44.12.0-2.a.1.2, $\ldots$ $[ ]$
446160.ii2 446160.ii \( 2^{4} \cdot 3 \cdot 5 \cdot 11 \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $29.85405525$ $[0, 1, 0, -61437823360, -5856764844124492]$ \(y^2=x^3+x^2-61437823360x-5856764844124492\) 2.6.0.a.1, 24.12.0.a.1, 88.12.0.?, 104.12.0.?, 132.12.0.?, $\ldots$ $[(18772781377252036/77921, 2563596216090119324816130/77921)]$
  displayed columns for results