Properties

Label 2142.t
Number of curves $2$
Conductor $2142$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 2142.t have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(7\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2142.t do not have complex multiplication.

Modular form 2142.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + 2 q^{5} + q^{7} + q^{8} + 2 q^{10} + 2 q^{11} + 4 q^{13} + q^{14} + q^{16} - q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 2142.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2142.t1 2142r2 \([1, -1, 1, -3434, -76575]\) \(6141556990297/1019592\) \(743282568\) \([2]\) \(1536\) \(0.71021\)  
2142.t2 2142r1 \([1, -1, 1, -194, -1407]\) \(-1102302937/616896\) \(-449717184\) \([2]\) \(768\) \(0.36364\) \(\Gamma_0(N)\)-optimal