Properties

Label 213282.br
Number of curves $1$
Conductor $213282$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("br1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 213282.br1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(17\)\(1\)
\(41\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 213282.br do not have complex multiplication.

Modular form 213282.2.a.br

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{5} + q^{8} + q^{10} + q^{11} + 4 q^{13} + q^{16} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 213282.br

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
213282.br1 213282x1 \([1, -1, 1, -437, 3757]\) \(-1180251027/53792\) \(-419738976\) \([]\) \(86400\) \(0.41858\) \(\Gamma_0(N)\)-optimal