Properties

Label 2112d
Number of curves $4$
Conductor $2112$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 2112d have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2112d do not have complex multiplication.

Modular form 2112.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 4 q^{5} - 2 q^{7} + q^{9} - q^{11} - 4 q^{13} - 4 q^{15} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 5 & 10 \\ 2 & 1 & 10 & 5 \\ 5 & 10 & 1 & 2 \\ 10 & 5 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 2112d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2112.n3 2112d1 \([0, -1, 0, -2881, 44353]\) \(10091699281/2737152\) \(717527973888\) \([2]\) \(3840\) \(0.98285\) \(\Gamma_0(N)\)-optimal
2112.n4 2112d2 \([0, -1, 0, 7359, 279873]\) \(168105213359/228637728\) \(-59936008568832\) \([2]\) \(7680\) \(1.3294\)  
2112.n1 2112d3 \([0, -1, 0, -644161, -198779327]\) \(112763292123580561/1932612\) \(506622640128\) \([2]\) \(19200\) \(1.7876\)  
2112.n2 2112d4 \([0, -1, 0, -643521, -199194687]\) \(-112427521449300721/466873642818\) \(-122388124222881792\) \([2]\) \(38400\) \(2.1341\)