Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2-23x+33\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z-23xz^2+33z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-30483x+1993518\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(4, 3)$ | $0.26632329047787228096373372771$ | $\infty$ |
$(-6, 3)$ | $0$ | $2$ |
$(2, -1)$ | $0$ | $2$ |
Integral points
\( \left(-6, 3\right) \), \( \left(-4, 11\right) \), \( \left(-4, -7\right) \), \( \left(-1, 8\right) \), \( \left(-1, -7\right) \), \( \left(1, 3\right) \), \( \left(1, -4\right) \), \( \left(2, -1\right) \), \( \left(3, 0\right) \), \( \left(3, -3\right) \), \( \left(4, 3\right) \), \( \left(4, -7\right) \), \( \left(8, 17\right) \), \( \left(8, -25\right) \), \( \left(29, 143\right) \), \( \left(29, -172\right) \), \( \left(34, 183\right) \), \( \left(34, -217\right) \), \( \left(5048, 356177\right) \), \( \left(5048, -361225\right) \)
Invariants
Conductor: | $N$ | = | \( 210 \) | = | $2 \cdot 3 \cdot 5 \cdot 7$ |
|
Discriminant: | $\Delta$ | = | $44100$ | = | $2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{1439069689}{44100} \) | = | $2^{-2} \cdot 3^{-2} \cdot 5^{-2} \cdot 7^{-2} \cdot 1129^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $-0.33299044219847621113962997929$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.33299044219847621113962997929$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9211379199077876$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.9436765711759536$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.26632329047787228096373372771$ |
|
Real period: | $\Omega$ | ≈ | $3.5846020263461843307559188552$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $0.95466300671016443659063754511 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 0.954663007 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 3.584602 \cdot 0.266323 \cdot 16}{4^2} \\ & \approx 0.954663007\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 32 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 281 & 4 \\ 562 & 9 \end{array}\right),\left(\begin{array}{rr} 837 & 4 \\ 836 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 171 & 2 \\ 166 & 839 \end{array}\right),\left(\begin{array}{rr} 631 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 421 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 723 & 2 \\ 358 & 839 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$1486356480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 1 \) |
$3$ | nonsplit multiplicative | $4$ | \( 70 = 2 \cdot 5 \cdot 7 \) |
$5$ | nonsplit multiplicative | $6$ | \( 42 = 2 \cdot 3 \cdot 7 \) |
$7$ | nonsplit multiplicative | $8$ | \( 30 = 2 \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 210d
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$4$ | \(\Q(\sqrt{2}, \sqrt{-3})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-2}, \sqrt{-35})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{3}, \sqrt{35})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.2.4253299470000.4 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | 16.0.63456228123711897600000000.10 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | nonsplit | nonsplit | nonsplit | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 3 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.