Properties

Label 209814ck
Number of curves $1$
Conductor $209814$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ck1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 209814ck1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(11\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 209814ck do not have complex multiplication.

Modular form 209814.2.a.ck

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} - 4 q^{5} + q^{6} + 4 q^{7} - q^{8} + q^{9} + 4 q^{10} - q^{12} - 4 q^{14} + 4 q^{15} + q^{16} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 209814ck

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
209814.c1 209814ck1 \([1, 1, 0, 3708601598, -4373222750173460]\) \(9010188470393231/13201960638001752\) \(-8265303652582324652570482836065688\) \([]\) \(2816985600\) \(5.1871\) \(\Gamma_0(N)\)-optimal