Properties

Label 20800.cs
Number of curves 11
Conductor 2080020800
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cs1") E.isogeny_class()
 

Elliptic curves in class 20800.cs

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
20800.cs1 20800bv1 [0,1,0,767,90463][0, 1, 0, 767, 90463] 304175/21632304175/21632 3544186880000-3544186880000 [][] 3225632256 1.08761.0876 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 20800.cs1 has rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
5511
13131T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1T+3T2 1 - T + 3 T^{2} 1.3.ab
77 1+4T+7T2 1 + 4 T + 7 T^{2} 1.7.e
1111 1+T+11T2 1 + T + 11 T^{2} 1.11.b
1717 1+7T+17T2 1 + 7 T + 17 T^{2} 1.17.h
1919 13T+19T2 1 - 3 T + 19 T^{2} 1.19.ad
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 14T+29T2 1 - 4 T + 29 T^{2} 1.29.ae
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 20800.cs do not have complex multiplication.

Modular form 20800.2.a.cs

Copy content sage:E.q_eigenform(10)
 
q+q34q72q9q11+q137q17+3q19+O(q20)q + q^{3} - 4 q^{7} - 2 q^{9} - q^{11} + q^{13} - 7 q^{17} + 3 q^{19} + O(q^{20}) Copy content Toggle raw display