Properties

Label 207552.bl
Number of curves $4$
Conductor $207552$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bl1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 207552.bl have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(23\)\(1 + T\)
\(47\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 207552.bl do not have complex multiplication.

Modular form 207552.2.a.bl

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} - 4 q^{7} + q^{9} + 4 q^{11} + 2 q^{13} - 2 q^{15} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 207552.bl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
207552.bl1 207552bl4 \([0, 1, 0, -11695809, -15399389025]\) \(674954705500996959793/9588192183\) \(2513487051620352\) \([2]\) \(5799936\) \(2.5086\)  
207552.bl2 207552bl3 \([0, 1, 0, -1077569, 9758751]\) \(527860858731041233/305306328935961\) \(80034222292588560384\) \([2]\) \(5799936\) \(2.5086\)  
207552.bl3 207552bl2 \([0, 1, 0, -731649, -240341409]\) \(165231457514151553/621021226401\) \(162796988373663744\) \([2, 2]\) \(2899968\) \(2.1620\)  
207552.bl4 207552bl1 \([0, 1, 0, -24769, -7212385]\) \(-6411014266033/81817611327\) \(-21447995903705088\) \([2]\) \(1449984\) \(1.8154\) \(\Gamma_0(N)\)-optimal