Properties

Label 207368p
Number of curves $2$
Conductor $207368$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 207368p have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 207368p do not have complex multiplication.

Modular form 207368.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} - 2 q^{5} + q^{9} + 4 q^{11} + 4 q^{15} + 6 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 207368p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
207368.e1 207368p1 \([0, 1, 0, -1149164, -379069664]\) \(109744/23\) \(35173628925910356224\) \([2]\) \(5677056\) \(2.4654\) \(\Gamma_0(N)\)-optimal
207368.e2 207368p2 \([0, 1, 0, 2479776, -2286440528]\) \(275684/529\) \(-3235973861183752772608\) \([2]\) \(11354112\) \(2.8120\)