Properties

Label 206400.fw
Number of curves $4$
Conductor $206400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fw1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 206400.fw have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(43\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 206400.fw do not have complex multiplication.

Modular form 206400.2.a.fw

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 4 q^{7} + q^{9} + 6 q^{13} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 206400.fw

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
206400.fw1 206400gi3 \([0, 1, 0, -25981633, 50964264863]\) \(947094050118111698/20769216075\) \(42535354521600000000\) \([2]\) \(15728640\) \(2.8821\)  
206400.fw2 206400gi2 \([0, 1, 0, -1681633, 736164863]\) \(513591322675396/68238500625\) \(69876224640000000000\) \([2, 2]\) \(7864320\) \(2.5356\)  
206400.fw3 206400gi1 \([0, 1, 0, -431633, -97585137]\) \(34739908901584/4081640625\) \(1044900000000000000\) \([2]\) \(3932160\) \(2.1890\) \(\Gamma_0(N)\)-optimal
206400.fw4 206400gi4 \([0, 1, 0, 2618367, 3888064863]\) \(969360123836302/3748293231075\) \(-7676504537241600000000\) \([2]\) \(15728640\) \(2.8821\)