Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2+38995x-3788378\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z+38995xz^2-3788378z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+623925x-241832250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(239, 4255)$ | $1.7327386866561819064041933386$ | $\infty$ |
$(331/4, -335/8)$ | $0$ | $2$ |
Integral points
\( \left(239, 4255\right) \), \( \left(239, -4495\right) \), \( \left(463, 10415\right) \), \( \left(463, -10879\right) \)
Invariants
Conductor: | $N$ | = | \( 20475 \) | = | $3^{2} \cdot 5^{2} \cdot 7 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $-9963158994140625$ | = | $-1 \cdot 3^{6} \cdot 5^{10} \cdot 7^{2} \cdot 13^{4} $ |
|
j-invariant: | $j$ | = | \( \frac{575722725759}{874680625} \) | = | $3^{3} \cdot 5^{-4} \cdot 7^{-2} \cdot 13^{-4} \cdot 47^{3} \cdot 59^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.7551537824595726002866629404$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.40112868190846756728866065533$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9400617403938522$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.413525338838085$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.7327386866561819064041933386$ |
|
Real period: | $\Omega$ | ≈ | $0.21568271951059124091465982361$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2^{2}\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.9897743371137242234598221363 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.989774337 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.215683 \cdot 1.732739 \cdot 32}{2^2} \\ & \approx 2.989774337\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 98304 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$5$ | $4$ | $I_{4}^{*}$ | additive | 1 | 2 | 10 | 4 |
$7$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$13$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.12.0.9 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 21840 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $192$, genus $3$, and generators
$\left(\begin{array}{rr} 7291 & 15486 \\ 12030 & 3931 \end{array}\right),\left(\begin{array}{rr} 15121 & 7296 \\ 2244 & 7345 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 21825 & 16 \\ 21824 & 17 \end{array}\right),\left(\begin{array}{rr} 13103 & 14544 \\ 1452 & 14495 \end{array}\right),\left(\begin{array}{rr} 11455 & 7446 \\ 474 & 11347 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 4 & 49 \end{array}\right),\left(\begin{array}{rr} 4096 & 3201 \\ 17745 & 4096 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 16 \\ 64 & 205 \end{array}\right),\left(\begin{array}{rr} 7279 & 0 \\ 0 & 21839 \end{array}\right)$.
The torsion field $K:=\Q(E[21840])$ is a degree-$155817722511360$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/21840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | good | $2$ | \( 225 = 3^{2} \cdot 5^{2} \) |
$3$ | additive | $6$ | \( 2275 = 5^{2} \cdot 7 \cdot 13 \) |
$5$ | additive | $18$ | \( 819 = 3^{2} \cdot 7 \cdot 13 \) |
$7$ | split multiplicative | $8$ | \( 2925 = 3^{2} \cdot 5^{2} \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 20475y
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 455b4, its twist by $-15$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-1}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{15}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-15}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(i, \sqrt{15})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.7965941760000.41 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.23134410000.3 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ord | add | add | split | ss | nonsplit | ord | ss | ord | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | 5 | - | - | 2 | 1,1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 1 | - | - | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.