Learn more

Refine search


Results (43 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
455.a4 455.a \( 5 \cdot 7 \cdot 13 \) $1$ $\Z/4\Z$ $0.618343551$ $[1, -1, 1, 173, 1076]$ \(y^2+xy+y=x^3-x^2+173x+1076\) 2.3.0.a.1, 4.24.0-4.d.1.1, 56.48.0-56.x.1.4, 520.48.0.?, 1040.96.0.?, $\ldots$ $[(-4, 19)]$
2275.e4 2275.e \( 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 4333, 138866]$ \(y^2+xy=x^3-x^2+4333x+138866\) 2.3.0.a.1, 4.12.0.d.1, 20.24.0-4.d.1.1, 56.24.0.x.1, 104.24.0.?, $\ldots$ $[ ]$
3185.c4 3185.c \( 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 8492, -386144]$ \(y^2+xy+y=x^3-x^2+8492x-386144\) 2.3.0.a.1, 4.12.0.d.1, 8.24.0-4.d.1.4, 28.24.0-4.d.1.1, 56.48.0-56.x.1.2, $\ldots$ $[ ]$
4095.i4 4095.i \( 3^{2} \cdot 5 \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $1.039306770$ $[1, -1, 0, 1560, -30619]$ \(y^2+xy=x^3-x^2+1560x-30619\) 2.3.0.a.1, 4.12.0.d.1, 12.24.0-4.d.1.1, 56.24.0.x.1, 168.48.0.?, $\ldots$ $[(20, 81)]$
5915.g4 5915.g \( 5 \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 29290, 2452425]$ \(y^2+xy=x^3-x^2+29290x+2452425\) 2.3.0.a.1, 4.12.0.d.1, 40.24.0-4.d.1.3, 52.24.0-4.d.1.1, 56.24.0.x.1, $\ldots$ $[ ]$
7280.o4 7280.o \( 2^{4} \cdot 5 \cdot 7 \cdot 13 \) $1$ $\Z/4\Z$ $2.609583025$ $[0, 0, 0, 2773, -71654]$ \(y^2=x^3+2773x-71654\) 2.3.0.a.1, 4.24.0-4.d.1.1, 56.48.0-56.x.1.4, 520.48.0.?, 1040.96.0.?, $\ldots$ $[(31, 210)]$
15925.t4 15925.t \( 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $4.513172330$ $[1, -1, 0, 212308, -48055659]$ \(y^2+xy=x^3-x^2+212308x-48055659\) 2.3.0.a.1, 4.12.0.d.1, 40.24.0-4.d.1.4, 56.24.0.x.1, 104.24.0.?, $\ldots$ $[(1811/2, 93089/2)]$
20475.n4 20475.n \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $1.732738686$ $[1, -1, 1, 38995, -3788378]$ \(y^2+xy+y=x^3-x^2+38995x-3788378\) 2.3.0.a.1, 4.12.0.d.1, 56.24.0.x.1, 60.24.0-4.d.1.1, 312.24.0.?, $\ldots$ $[(239, 4255)]$
28665.bp4 28665.bp \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 76431, 10349450]$ \(y^2+xy=x^3-x^2+76431x+10349450\) 2.3.0.a.1, 4.12.0.d.1, 24.24.0-4.d.1.4, 56.24.0.x.1, 84.24.0.?, $\ldots$ $[ ]$
29120.z4 29120.z \( 2^{6} \cdot 5 \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $1.258448158$ $[0, 0, 0, 11092, 573232]$ \(y^2=x^3+11092x+573232\) 2.3.0.a.1, 4.12.0.d.1, 8.24.0-4.d.1.1, 28.24.0-4.d.1.2, 56.48.0-56.x.1.3, $\ldots$ $[(6, 800)]$
29120.bc4 29120.bc \( 2^{6} \cdot 5 \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $3.876589641$ $[0, 0, 0, 11092, -573232]$ \(y^2=x^3+11092x-573232\) 2.3.0.a.1, 4.12.0.d.1, 8.24.0-4.d.1.1, 28.24.0-4.d.1.2, 56.48.0-56.x.1.3, $\ldots$ $[(188, 2856)]$
29575.h4 29575.h \( 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $2.789946783$ $[1, -1, 1, 732245, 307285372]$ \(y^2+xy+y=x^3-x^2+732245x+307285372\) 2.3.0.a.1, 4.12.0.d.1, 8.24.0-4.d.1.3, 56.48.0-56.x.1.8, 260.24.0.?, $\ldots$ $[(-341, 4395)]$
36400.bh4 36400.bh \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 69325, -8956750]$ \(y^2=x^3+69325x-8956750\) 2.3.0.a.1, 4.12.0.d.1, 20.24.0-4.d.1.1, 56.24.0.x.1, 104.24.0.?, $\ldots$ $[ ]$
41405.l4 41405.l \( 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $9.580475242$ $[1, -1, 0, 1435201, -844052182]$ \(y^2+xy=x^3-x^2+1435201x-844052182\) 2.3.0.a.1, 4.12.0.d.1, 40.24.0-4.d.1.5, 56.24.0.x.1, 104.24.0.?, $\ldots$ $[(619597/4, 486698451/4)]$
50960.x4 50960.x \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $6.243744524$ $[0, 0, 0, 135877, 24577322]$ \(y^2=x^3+135877x+24577322\) 2.3.0.a.1, 4.12.0.d.1, 8.24.0-4.d.1.4, 28.24.0-4.d.1.1, 56.48.0-56.x.1.2, $\ldots$ $[(4543/3, 402094/3)]$
53235.p4 53235.p \( 3^{2} \cdot 5 \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 263608, -66479084]$ \(y^2+xy+y=x^3-x^2+263608x-66479084\) 2.3.0.a.1, 4.12.0.d.1, 56.24.0.x.1, 120.24.0.?, 156.24.0.?, $\ldots$ $[ ]$
55055.p4 55055.p \( 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 20971, -1495422]$ \(y^2+xy=x^3-x^2+20971x-1495422\) 2.3.0.a.1, 4.12.0.d.1, 44.24.0-4.d.1.1, 56.24.0.x.1, 520.24.0.?, $\ldots$ $[ ]$
65520.bs4 65520.bs \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $1.318873358$ $[0, 0, 0, 24957, 1934658]$ \(y^2=x^3+24957x+1934658\) 2.3.0.a.1, 4.12.0.d.1, 12.24.0-4.d.1.1, 56.24.0.x.1, 168.48.0.?, $\ldots$ $[(159, 3150)]$
94640.bm4 94640.bm \( 2^{4} \cdot 5 \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 468637, -157423838]$ \(y^2=x^3+468637x-157423838\) 2.3.0.a.1, 4.12.0.d.1, 40.24.0-4.d.1.3, 52.24.0-4.d.1.1, 56.24.0.x.1, $\ldots$ $[ ]$
131495.d4 131495.d \( 5 \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $0.896758803$ $[1, -1, 1, 50087, 5488042]$ \(y^2+xy+y=x^3-x^2+50087x+5488042\) 2.3.0.a.1, 4.12.0.d.1, 56.24.0.x.1, 68.24.0-4.d.1.1, 520.24.0.?, $\ldots$ $[(-38, 1897)]$
143325.bu4 143325.bu \( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 1910770, 1295592022]$ \(y^2+xy+y=x^3-x^2+1910770x+1295592022\) 2.3.0.a.1, 4.12.0.d.1, 56.24.0.x.1, 120.24.0.?, 312.24.0.?, $\ldots$ $[ ]$
145600.dr4 145600.dr \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $3.017389891$ $[0, 0, 0, 277300, -71654000]$ \(y^2=x^3+277300x-71654000\) 2.3.0.a.1, 4.12.0.d.1, 40.24.0-4.d.1.1, 56.24.0.x.1, 104.24.0.?, $\ldots$ $[(285, 5525)]$
145600.es4 145600.es \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $1.362261092$ $[0, 0, 0, 277300, 71654000]$ \(y^2=x^3+277300x+71654000\) 2.3.0.a.1, 4.12.0.d.1, 40.24.0-4.d.1.1, 56.24.0.x.1, 104.24.0.?, $\ldots$ $[(40, 9100)]$
164255.s4 164255.s \( 5 \cdot 7 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $3.889655217$ $[1, -1, 0, 62566, -7694935]$ \(y^2+xy=x^3-x^2+62566x-7694935\) 2.3.0.a.1, 4.12.0.d.1, 56.24.0.x.1, 76.24.0.?, 520.24.0.?, $\ldots$ $[(256, 4877)]$
203840.dp4 203840.dp \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 543508, -196618576]$ \(y^2=x^3+543508x-196618576\) 2.3.0.a.1, 4.24.0-4.d.1.2, 56.48.0-56.x.1.1, 520.48.0.?, 1040.96.0.?, $\ldots$ $[ ]$
203840.dq4 203840.dq \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.692117722$ $[0, 0, 0, 543508, 196618576]$ \(y^2=x^3+543508x+196618576\) 2.3.0.a.1, 4.24.0-4.d.1.2, 56.48.0-56.x.1.1, 520.48.0.?, 1040.96.0.?, $\ldots$ $[(-243, 7085)]$
207025.x4 207025.x \( 5^{2} \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 35880020, -105470642728]$ \(y^2+xy+y=x^3-x^2+35880020x-105470642728\) 2.3.0.a.1, 4.12.0.d.1, 8.24.0-4.d.1.5, 56.48.0-56.x.1.6, 520.48.0.?, $\ldots$ $[ ]$
240695.f4 240695.f \( 5 \cdot 7 \cdot 13 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 91682, -13645018]$ \(y^2+xy+y=x^3-x^2+91682x-13645018\) 2.3.0.a.1, 4.12.0.d.1, 56.24.0.x.1, 92.24.0.?, 520.24.0.?, $\ldots$ $[ ]$
254800.dq4 254800.dq \( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $2$ $\Z/2\Z$ $9.448112114$ $[0, 0, 0, 3396925, 3072165250]$ \(y^2=x^3+3396925x+3072165250\) 2.3.0.a.1, 4.12.0.d.1, 40.24.0-4.d.1.4, 56.24.0.x.1, 104.24.0.?, $\ldots$ $[(855, 81250), (3390, 231400)]$
262080.iw4 262080.iw \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $1.670854955$ $[0, 0, 0, 99828, -15477264]$ \(y^2=x^3+99828x-15477264\) 2.3.0.a.1, 4.12.0.d.1, 24.24.0-4.d.1.1, 56.24.0.x.1, 84.24.0.?, $\ldots$ $[(942, 30240)]$
262080.lv4 262080.lv \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $2.735605607$ $[0, 0, 0, 99828, 15477264]$ \(y^2=x^3+99828x+15477264\) 2.3.0.a.1, 4.12.0.d.1, 24.24.0-4.d.1.1, 56.24.0.x.1, 84.24.0.?, $\ldots$ $[(-32, 3500)]$
266175.de4 266175.de \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 6590208, -8303295259]$ \(y^2+xy=x^3-x^2+6590208x-8303295259\) 2.3.0.a.1, 4.12.0.d.1, 24.24.0-4.d.1.3, 56.24.0.x.1, 168.48.0.?, $\ldots$ $[ ]$
275275.t4 275275.t \( 5^{2} \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.818360702$ $[1, -1, 1, 524270, -186403478]$ \(y^2+xy+y=x^3-x^2+524270x-186403478\) 2.3.0.a.1, 4.12.0.d.1, 56.24.0.x.1, 220.24.0.?, 520.24.0.?, $\ldots$ $[(514, 14530)]$
327600.dd4 327600.dd \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $3.144192215$ $[0, 0, 0, 623925, 241832250]$ \(y^2=x^3+623925x+241832250\) 2.3.0.a.1, 4.12.0.d.1, 56.24.0.x.1, 60.24.0-4.d.1.1, 312.24.0.?, $\ldots$ $[(295, 21250)]$
372645.bd4 372645.bd \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $7.178805917$ $[1, -1, 1, 12916807, 22776492106]$ \(y^2+xy+y=x^3-x^2+12916807x+22776492106\) 2.3.0.a.1, 4.12.0.d.1, 56.24.0.x.1, 120.24.0.?, 312.24.0.?, $\ldots$ $[(2095/2, 1376251/2)]$
378560.ex4 378560.ex \( 2^{6} \cdot 5 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $4.656529165$ $[0, 0, 0, 1874548, -1259390704]$ \(y^2=x^3+1874548x-1259390704\) 2.3.0.a.1, 4.12.0.d.1, 40.24.0-4.d.1.2, 56.24.0.x.1, 104.24.0.?, $\ldots$ $[(3757, 242515)]$
378560.fk4 378560.fk \( 2^{6} \cdot 5 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $2.157427406$ $[0, 0, 0, 1874548, 1259390704]$ \(y^2=x^3+1874548x+1259390704\) 2.3.0.a.1, 4.12.0.d.1, 40.24.0-4.d.1.2, 56.24.0.x.1, 104.24.0.?, $\ldots$ $[(468, 47320)]$
382655.j4 382655.j \( 5 \cdot 7 \cdot 13 \cdot 29^{2} \) $1$ $\Z/2\Z$ $1.510626625$ $[1, -1, 0, 145756, 27269333]$ \(y^2+xy=x^3-x^2+145756x+27269333\) 2.3.0.a.1, 4.12.0.d.1, 56.24.0.x.1, 116.24.0.?, 520.24.0.?, $\ldots$ $[(52, 5889)]$
385385.ba4 385385.ba \( 5 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 1027570, 510874601]$ \(y^2+xy=x^3-x^2+1027570x+510874601\) 2.3.0.a.1, 4.12.0.d.1, 56.24.0.x.1, 88.24.0.?, 308.24.0.?, $\ldots$ $[ ]$
437255.a4 437255.a \( 5 \cdot 7 \cdot 13 \cdot 31^{2} \) $1$ $\Z/2\Z$ $4.611274000$ $[1, -1, 1, 166553, -33395456]$ \(y^2+xy+y=x^3-x^2+166553x-33395456\) 2.3.0.a.1, 4.12.0.d.1, 56.24.0.x.1, 124.24.0.?, 520.24.0.?, $\ldots$ $[(622, 17311)]$
458640.kl4 458640.kl \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.240999840$ $[0, 0, 0, 1222893, -663587694]$ \(y^2=x^3+1222893x-663587694\) 2.3.0.a.1, 4.12.0.d.1, 24.24.0-4.d.1.4, 56.24.0.x.1, 84.24.0.?, $\ldots$ $[(14151, 1688310)]$
473200.em4 473200.em \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $2.141779647$ $[0, 0, 0, 11715925, -19677979750]$ \(y^2=x^3+11715925x-19677979750\) 2.3.0.a.1, 4.12.0.d.1, 8.24.0-4.d.1.3, 56.48.0-56.x.1.8, 260.24.0.?, $\ldots$ $[(3055, 211250)]$
495495.z4 495495.z \( 3^{2} \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $2$ $\Z/2\Z$ $6.662387707$ $[1, -1, 1, 188737, 40187656]$ \(y^2+xy+y=x^3-x^2+188737x+40187656\) 2.3.0.a.1, 4.12.0.d.1, 56.24.0.x.1, 132.24.0.?, 520.24.0.?, $\ldots$ $[(91, 7577), (-125, 3887)]$
  displayed columns for results