Properties

Label 20475.n
Number of curves $4$
Conductor $20475$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("n1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 20475.n have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 20475.n do not have complex multiplication.

Modular form 20475.2.a.n

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} + q^{7} + 3 q^{8} - q^{13} - q^{14} - q^{16} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 20475.n

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
20475.n1 20475y3 \([1, -1, 1, -89255, 9792622]\) \(6903498885921/374712065\) \(4268204615390625\) \([2]\) \(98304\) \(1.7552\)  
20475.n2 20475y2 \([1, -1, 1, -16130, -591128]\) \(40743095121/10144225\) \(115549062890625\) \([2, 2]\) \(49152\) \(1.4086\)  
20475.n3 20475y1 \([1, -1, 1, -15005, -703628]\) \(32798729601/3185\) \(36279140625\) \([2]\) \(24576\) \(1.0620\) \(\Gamma_0(N)\)-optimal
20475.n4 20475y4 \([1, -1, 1, 38995, -3788378]\) \(575722725759/874680625\) \(-9963158994140625\) \([2]\) \(98304\) \(1.7552\)