Properties

Label 2040.e
Number of curves $1$
Conductor $2040$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 2040.e1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2040.e do not have complex multiplication.

Modular form 2040.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} - 3 q^{7} + q^{9} - 3 q^{11} + 4 q^{13} - q^{15} + q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 2040.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2040.e1 2040d1 \([0, -1, 0, 0, -3]\) \(-256/255\) \(-4080\) \([]\) \(96\) \(-0.62816\) \(\Gamma_0(N)\)-optimal