Show commands: SageMath
Rank
The elliptic curves in class 2040.d have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 2040.d do not have complex multiplication.Modular form 2040.2.a.d
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 2040.d
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 2040.d1 | 2040l4 | \([0, -1, 0, -97920, 11826540]\) | \(50700519510140162/2295\) | \(4700160\) | \([2]\) | \(4608\) | \(1.2093\) | |
| 2040.d2 | 2040l3 | \([0, -1, 0, -6800, 143052]\) | \(16981825082402/5646560625\) | \(11564156160000\) | \([2]\) | \(4608\) | \(1.2093\) | |
| 2040.d3 | 2040l2 | \([0, -1, 0, -6120, 186300]\) | \(24759905519524/5267025\) | \(5393433600\) | \([2, 2]\) | \(2304\) | \(0.86271\) | |
| 2040.d4 | 2040l1 | \([0, -1, 0, -340, 3652]\) | \(-17029316176/11275335\) | \(-2886485760\) | \([4]\) | \(1152\) | \(0.51613\) | \(\Gamma_0(N)\)-optimal |