Properties

Label 2040.d
Number of curves $4$
Conductor $2040$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 2040.d have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2040.d do not have complex multiplication.

Modular form 2040.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} - 4 q^{7} + q^{9} + 4 q^{11} + 2 q^{13} - q^{15} + q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 2040.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2040.d1 2040l4 \([0, -1, 0, -97920, 11826540]\) \(50700519510140162/2295\) \(4700160\) \([2]\) \(4608\) \(1.2093\)  
2040.d2 2040l3 \([0, -1, 0, -6800, 143052]\) \(16981825082402/5646560625\) \(11564156160000\) \([2]\) \(4608\) \(1.2093\)  
2040.d3 2040l2 \([0, -1, 0, -6120, 186300]\) \(24759905519524/5267025\) \(5393433600\) \([2, 2]\) \(2304\) \(0.86271\)  
2040.d4 2040l1 \([0, -1, 0, -340, 3652]\) \(-17029316176/11275335\) \(-2886485760\) \([4]\) \(1152\) \(0.51613\) \(\Gamma_0(N)\)-optimal