Properties

Label 202800.da
Number of curves $4$
Conductor $202800$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("da1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 202800.da have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 202800.da do not have complex multiplication.

Modular form 202800.2.a.da

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{9} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 202800.da

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
202800.da1 202800fp3 \([0, -1, 0, -32686008, 71924950512]\) \(12501706118329/2570490\) \(794064913050240000000\) \([2]\) \(12386304\) \(3.0074\)  
202800.da2 202800fp2 \([0, -1, 0, -2266008, 863830512]\) \(4165509529/1368900\) \(422874805766400000000\) \([2, 2]\) \(6193152\) \(2.6608\)  
202800.da3 202800fp1 \([0, -1, 0, -914008, -325929488]\) \(273359449/9360\) \(2891451663360000000\) \([2]\) \(3096576\) \(2.3142\) \(\Gamma_0(N)\)-optimal
202800.da4 202800fp4 \([0, -1, 0, 6521992, 5925718512]\) \(99317171591/106616250\) \(-32935441602960000000000\) \([2]\) \(12386304\) \(3.0074\)