Properties

Label 20280.bf
Number of curves $4$
Conductor $20280$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bf1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 20280.bf have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 20280.bf do not have complex multiplication.

Modular form 20280.2.a.bf

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + 4 q^{7} + q^{9} - 4 q^{11} + q^{15} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 20280.bf

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
20280.bf1 20280be3 \([0, 1, 0, -279920, -56881200]\) \(490757540836/2142075\) \(10587532174003200\) \([2]\) \(258048\) \(1.9278\)  
20280.bf2 20280be2 \([0, 1, 0, -26420, 105600]\) \(1650587344/950625\) \(1174652238240000\) \([2, 2]\) \(129024\) \(1.5812\)  
20280.bf3 20280be1 \([0, 1, 0, -18815, 984738]\) \(9538484224/26325\) \(2033051950800\) \([4]\) \(64512\) \(1.2346\) \(\Gamma_0(N)\)-optimal
20280.bf4 20280be4 \([0, 1, 0, 105400, 949248]\) \(26198797244/15234375\) \(-75298220400000000\) \([2]\) \(258048\) \(1.9278\)