Properties

Label 202675bd
Number of curves $1$
Conductor $202675$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bd1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 202675bd1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(5\)\(1\)
\(11\)\(1\)
\(67\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 202675bd do not have complex multiplication.

Modular form 202675.2.a.bd

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + 2 q^{3} - q^{4} + 2 q^{6} - 2 q^{7} - 3 q^{8} + q^{9} - 2 q^{12} + 6 q^{13} - 2 q^{14} - q^{16} + 5 q^{17} + q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 202675bd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
202675.bd1 202675bd1 \([1, 1, 0, -10967200, 13990908375]\) \(-1020329117085025/1350125107\) \(-193038883706904296875\) \([]\) \(8964000\) \(2.7989\) \(\Gamma_0(N)\)-optimal