Properties

Label 202675.bb
Number of curves $1$
Conductor $202675$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 202675.bb1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(5\)\(1\)
\(11\)\(1\)
\(67\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 202675.bb do not have complex multiplication.

Modular form 202675.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} + 2 q^{7} - 3 q^{8} - 3 q^{9} - 4 q^{13} + 2 q^{14} - q^{16} - 3 q^{17} - 3 q^{18} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 202675.bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
202675.bb1 202675bb1 \([1, -1, 0, -17, 116]\) \(-7425/67\) \(-5066875\) \([]\) \(23184\) \(-0.030974\) \(\Gamma_0(N)\)-optimal