Show commands: SageMath
Rank
The elliptic curves in class 202521.y have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 202521.y do not have complex multiplication.Modular form 202521.2.a.y
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 202521.y
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 202521.y1 | 202521y3 | \([1, 1, 0, -65709, 6432648]\) | \(666940371553/2756193\) | \(129667527891033\) | \([2]\) | \(774144\) | \(1.5633\) | |
| 202521.y2 | 202521y2 | \([1, 1, 0, -6144, -12285]\) | \(545338513/314721\) | \(14806326714201\) | \([2, 2]\) | \(387072\) | \(1.2167\) | |
| 202521.y3 | 202521y1 | \([1, 1, 0, -4339, -111560]\) | \(192100033/561\) | \(26392739241\) | \([2]\) | \(193536\) | \(0.87013\) | \(\Gamma_0(N)\)-optimal |
| 202521.y4 | 202521y4 | \([1, 1, 0, 24541, -67518]\) | \(34741712447/20160657\) | \(-948475870103817\) | \([2]\) | \(774144\) | \(1.5633\) |