Properties

Label 202521.y
Number of curves $4$
Conductor $202521$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 202521.y have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(11\)\(1 - T\)
\(17\)\(1 - T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 202521.y do not have complex multiplication.

Modular form 202521.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} - q^{4} + 2 q^{5} - q^{6} - 3 q^{8} + q^{9} + 2 q^{10} + q^{11} + q^{12} + 2 q^{13} - 2 q^{15} - q^{16} + q^{17} + q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 202521.y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
202521.y1 202521y3 \([1, 1, 0, -65709, 6432648]\) \(666940371553/2756193\) \(129667527891033\) \([2]\) \(774144\) \(1.5633\)  
202521.y2 202521y2 \([1, 1, 0, -6144, -12285]\) \(545338513/314721\) \(14806326714201\) \([2, 2]\) \(387072\) \(1.2167\)  
202521.y3 202521y1 \([1, 1, 0, -4339, -111560]\) \(192100033/561\) \(26392739241\) \([2]\) \(193536\) \(0.87013\) \(\Gamma_0(N)\)-optimal
202521.y4 202521y4 \([1, 1, 0, 24541, -67518]\) \(34741712447/20160657\) \(-948475870103817\) \([2]\) \(774144\) \(1.5633\)