Properties

Label 20216.a
Number of curves 11
Conductor 2021620216
CM no
Rank 22

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 20216.a1 has rank 22.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
771T1 - T
191911
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1+3T+3T2 1 + 3 T + 3 T^{2} 1.3.d
55 1+3T+5T2 1 + 3 T + 5 T^{2} 1.5.d
1111 1+4T+11T2 1 + 4 T + 11 T^{2} 1.11.e
1313 13T+13T2 1 - 3 T + 13 T^{2} 1.13.ad
1717 1+3T+17T2 1 + 3 T + 17 T^{2} 1.17.d
2323 1+9T+23T2 1 + 9 T + 23 T^{2} 1.23.j
2929 19T+29T2 1 - 9 T + 29 T^{2} 1.29.aj
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 20216.a do not have complex multiplication.

Modular form 20216.2.a.a

Copy content sage:E.q_eigenform(10)
 
q3q33q5+q7+6q94q11+3q13+9q153q17+O(q20)q - 3 q^{3} - 3 q^{5} + q^{7} + 6 q^{9} - 4 q^{11} + 3 q^{13} + 9 q^{15} - 3 q^{17} + O(q^{20}) Copy content Toggle raw display

Elliptic curves in class 20216.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
20216.a1 20216l1 [0,0,0,19,19][0, 0, 0, -19, 19] 131328/49131328/49 283024283024 [][] 51845184 0.25406-0.25406 Γ0(N)\Gamma_0(N)-optimal