Properties

Label 20160.ca
Number of curves $4$
Conductor $20160$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ca1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 20160.ca have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 20160.ca do not have complex multiplication.

Modular form 20160.2.a.ca

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + q^{7} + 2 q^{13} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 20160.ca

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
20160.ca1 20160bl4 \([0, 0, 0, -134508, 18987568]\) \(5633270409316/14175\) \(677221171200\) \([2]\) \(65536\) \(1.5084\)  
20160.ca2 20160bl3 \([0, 0, 0, -23628, -1023248]\) \(30534944836/8203125\) \(391910400000000\) \([2]\) \(65536\) \(1.5084\)  
20160.ca3 20160bl2 \([0, 0, 0, -8508, 289168]\) \(5702413264/275625\) \(3292047360000\) \([2, 2]\) \(32768\) \(1.1618\)  
20160.ca4 20160bl1 \([0, 0, 0, 312, 17512]\) \(4499456/180075\) \(-134425267200\) \([2]\) \(16384\) \(0.81521\) \(\Gamma_0(N)\)-optimal