Properties

Label 201438i
Number of curves $4$
Conductor $201438$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 201438i have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(19\)\(1\)
\(31\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 201438i do not have complex multiplication.

Modular form 201438.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + 2 q^{5} + q^{8} + 2 q^{10} - 2 q^{13} + q^{16} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 201438i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
201438.z4 201438i1 \([1, -1, 1, -2234, 203113]\) \(-35937/496\) \(-17011037835504\) \([2]\) \(442368\) \(1.2203\) \(\Gamma_0(N)\)-optimal
201438.z3 201438i2 \([1, -1, 1, -67214, 6701113]\) \(979146657/3844\) \(131835543225156\) \([2, 2]\) \(884736\) \(1.5669\)  
201438.z1 201438i3 \([1, -1, 1, -1074404, 428915161]\) \(3999236143617/62\) \(2126379729438\) \([2]\) \(1769472\) \(1.9134\)  
201438.z2 201438i4 \([1, -1, 1, -99704, -420695]\) \(3196010817/1847042\) \(63346978519687458\) \([2]\) \(1769472\) \(1.9134\)