Properties

Label 198744bt
Number of curves $1$
Conductor $198744$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bt1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 198744bt1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 4 T + 5 T^{2}\) 1.5.e
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 198744bt do not have complex multiplication.

Modular form 198744.2.a.bt

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{9} + 6 q^{11} - 8 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 198744bt

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
198744.y1 198744bt1 \([0, -1, 0, 7432, 36828]\) \(45500/27\) \(-26936101850112\) \([]\) \(556416\) \(1.2664\) \(\Gamma_0(N)\)-optimal